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Abstract

We consider a simple pure exchange economy with two assets: one riskless, yielding a con-
stant return on investment, and the other risky, paying a stochastic dividend. Trading takes place
in discrete time and in each trading period the price of the risky asset is fixed by imposing a
market clearing condition on the sum of individual demand functions. Individual demand for the
risky asset is expressed as a fraction of wealth and depends on how traders forecast future price
movement. Under these assumptions we derive the stochastic dynamical system describing the
evolution of price and wealth.

We study the set of equilibria of this system for the case when arbitrarily many heterogeneous
agents operate in the market, and we provide an asymptotic characterization of their relative
performance. Abstracting from precise specification of agents’ investment decisions, we show
that all possible equilibrium returns belong to a one-dimensional “Equilibrium Market Line”.
It turns out that the system possesses isolated equilibria where a single agent dominates the
market and continuous manifolds of equilibria where many agents hold finite wealth shares. The
mechanism via which the market endogenously selects the dominant traders displays an optimal
character in the neighborhood of the equilibria, but, at the same time, leads to the impossibility
of defining a global dominance order relation among strategies.
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1 Introduction

The standard classical models of financial markets, based on the presumption of the existence of a
representative agent with full information and rational expectations, are regarded with an increasing
skepticism by a growing number of scholars working in the field of finance and economic theory.
In the last two decades, this dissatisfaction has led to the development of a new strand of literature
built around quite heterogeneous contributions often joined under the label of ”agent-based models”.
One could roughly divide these contributions into two partially overlapping classes. The first class
contains models where results come from a strict analytical investigation. Among the examples
surveyed in Hommes (2005) let us mention the models that bear a closer relationship with the present
work: Chiarella (1992), Kirman (1993), Lux (1995), Brock and Hommes (1998), Gaunersdorfer
(2000), Chiarella et al. (2002), Chiarella and He (2001, 2002b). The second class consists of models
based on the presentation and discussion of extensive computer simulations. Such an approach was
used, among many others, in Levy et al. (1994), Arthur et al. (1997), LeBaron et al. (1999), Lux and
Marchesi (1999), Zschischang and Lux (2001), Farmer (2002) and Bottazzi et al. (2005). The reader
is referred to LeBaron (2005) for a critical review of these works.

This paper is mainly intended as a contribution to the first class of models. We present a generic
agent-based model and investigate its properties using analytical tools from the theory of dynam-
ical systems. At the same time, our results shed new light on various regularities that have been
previously, and repeatedly, observed in simulation-based studies.

We consider a simple, two-asset economy with a riskless security and an infinitely living risky
equity. We model traders as adaptive heterogeneous agents who base their investment decisions on
forecasts of future prices derived from the past market history. We assume that individual demand
for the risky asset is expressed as a fraction of wealth. This assumption is consistent with, but not
limited to, the behavior based on expected utility maximization with a constantrelativerisk aversion
(CRRA) utility function.

The choice of a CRRA framework is somewhat unusual among agent-based analytical models,
where the general preference seems to be for models in which the demand functions of agents are
independent from the level of their wealth; a choice that is consistent with the maximization of a
constant absolute risk aversion (CARA) expected utility. Examples of the latter approach are the
Santa-Fe artificial market model described in Arthur et al. (1997) and LeBaron et al. (1999), and,
among the analytical investigations, Brock and Hommes (1998) and its generalizations in Gauners-
dorfer (2000), Chiarella and He (2002a) and Brock et al. (2005). The CARA framework is relatively
more simple to handle, exactly because, in this case, the price dynamics is independent of the wealth
distribution. This implies, as a direct economic consequence, that in these models all agents have the
same impact on price formation, irrespective of their wealth. This relatively awkward property hints
to the possibility that these models miss some important features of real markets. Moreover, there
is empirical and experimental evidence (see the discussion in Levy et al. (2000)) suggesting that the
behavior of traders and investors is rather consistent with a decreasing (with wealth) absolute risk
aversion and/or with a constant relative risk aversion.

It is therefore not surprising that the CRRA framework has been the preferred choice both in
the classical contributions, such as in Samuelson (1969), and in recent simulation-based models,
which are not constrained by the need for mathematical simplicity, as in Levy et al. (1994, 1995)
and Zschischang and Lux (2001). However, even with parsimoniously parameterized models there
are few questions that can be definitely answered solely by use of computer simulations. Hence, an
analytical investigation of such a framework seems necessary. To our knowledge only a few attempts
in this direction have been carried out. These can be classified into two groups, according to the as-
sumptions made about the underlying structure of the economy. The first group considers economies
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composed of short lived assets whose reward is generated by exogenously given processes; see for
instance Blume and Easley (1992), Amir et al. (2005), Hens and Schenk-Hoppé (2005). The sec-
ond group assumes infinitely lived securities whose investment returns possess an endogenously
determined component (capital gain) that is the result of some intertemporal relationship between
successive investment decisions; see Chiarella and He (2001, 2002b). This second class of security
seems to more suitably describe the nature of the goods exchanged in many financial markets, like
the global foreign exchange market, the bond market or the stock market.

The fact that it is impossible to derive a closed analytical expression for the solution of the
CRRA expected utility maximization problem forced Chiarella and He to rely upon approximate
expressions for the agent’s demand function. Moreover, the requirement of keeping the dynamical
system describing the evolution of the economy to a low dimension limited their investigation to the
case in which only a small set of different strategies (one or two) operates at the same time in the
market.

In the present paper we take a different approach and, while we keep exactly the same eco-
nomic structure considered in Chiarella and He (2001, 2002b) and a similar adaptive behavior for
the agents, we extend the analysis in two directions. First, instead of deriving the individual demands
from an (approximate) utility maximization principle, we model, in total generality, the agents’ in-
vestment choices as smooth functions of the exponentially weighted moving average (EWMA) es-
timates of future asset return and variance. Thisinvestment functioncan be agent-specific, partially
due to the fact that its shape should somehow depend on the agent’s attitude towards risk, and par-
tially due to the different possible ways in which an agent can transform an available information set
(public or private) into predictions about the future. Second, we extend our analysis to the case in
which a fixed, but arbitrarily large, number of agents operate in the market at the same time.

In this framework we are able to provide a complete characterization of the market equilibria and
a description of their stability conditions in terms of a few parameters derived from the traders’ in-
vestment functions. It turns out that, irrespective of the ecology of the agents operating in the market,
the location of all steady-states can be illustrated by means of a simple function, the “Equilibrium
Market Line” (EML). This separation between the underlying market structure which leads to the
definition of the EML, and those aspects of the investment behaviors of traders, determining the pre-
cise equilibrium points, allows us to derive (notwithstanding the generality of the framework) several
important conclusions. In particular, we find that, irrespective of the number of agents operating in
the market and of the structure of their demand functions, only three types of equilibria are possible.
First, generic equilibria associated with isolated fixed points, where a single agent asymptotically
possesses the entire wealth of the economy. Second, generic “no-arbitrage” equilibria, where many
agents coexist and both assets yield the same expected return. And, third, non-generic equilibria
associated with continuous manifolds of fixed points, where many agents possess finite shares of the
total wealth.

By means of stability analysis we are able to describe the relative asymptotic performances
of the different investment functions and, ultimately, the mechanism via which the market selects
the surviving traders. In this way the “quasi-optimal selection principle”, originally formulated
in Chiarella and He (2001) for (approximate) logarithmic utility maximizers, is extended to generic
investment functions and arbitrarily large markets. This extension reveals the essentially local nature
of the market selection process and the impossibility of defining any global dominance order relation
among agents.

The rest of the paper is organized as follows. In the next Section the model is presented. We
describe the structure of the economy, introduce the individual investment functions and derive the
price and wealth dynamics as a multi-dimensional dynamical system. For ease of presentation, the
discussion of the results is organized in successive steps, of increasing difficulty. In Section 3 we
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consider the simple case of homogeneous investment choices. We begin with the analysis of invest-
ment functions that depend on the EWMA estimator of the average return. The possible equilibria
and their stability conditions are derived and briefly discussed. Then, we generalize our findings to
the case in which the homogeneous investment function depends on the expected variance of future
return. It turns out that accounting for the endogenous component of risk generated by the price
volatility does not play any role in the determination of the equilibria and in their local stability. In
Section 4 our analysis is extended to the general case of heterogeneous expectations, when many
distinct agents operate in the market. We derive, under generic agents’ preferences, the dynamical
system describing the evolution of the economy, characterize all the possible equilibria and study
their stability. In Section 5 we present two applications of the derived results. First, we consider a
simple family of individual investment functions and discuss the effect of the different parameters
on the location and stability of market equilibria. Second, we discuss, from a broader perspective,
the mechanism by which a set of dominating behaviors emerges from the interaction of many het-
erogeneous agents. Section 6 summarizes our findings and lists some directions for further research.
The proofs of all propositions are given in the Appendix.

2 Model Structure

We consider a simple pure exchange economy, populated by a fixed numberN of traders, where
trading activities are supposed to take place in discrete time. The economy is composed of a riskless
asset (bond) yielding in each period a constant interest raterf > 0 and a risky asset (equity) paying a
random dividendDt at the beginning of each periodt. The riskless asset is considered the numéraire
of the economy and its price is fixed to1. The ex-dividend pricePt of the risky asset is determined
at each period, on the basis of its aggregate demand, through a market-clearing condition.

With these specifications, letxt,n stand for the fraction of the wealthWt,n which, at timet, agent
n (n ∈ {1, . . . , N}) invests in the risky asset. After the trading session at timet − 1, agentn
possessesxt−1,n Wt−1,n/Pt−1 shares of the risky asset and(1− xt−1,n) Wt−1,n shares of the riskless
asset. Agentn then receives dividends paymentDt per each risky asset and payment of riskless
interestrf on the wealth invested in the riskless security. Therefore, before the trade at timet the
wealth of agentn, for any notional priceP , reads

Wt,n(P ) = (1− xt−1,n) Wt−1,n (1 + rf ) +
xt−1,n Wt−1,n

Pt−1

(P + Dt) (2.1)

and his individual demand for the risky asset becomesxt,n Wt,n(P )/P . The actual price of the
risky asset is fixed at the level for which aggregate demand is equal to aggregate supply. Assuming a
constant supply of the risky asset, whose quantity can then be normalized to1, the pricePt is defined
as the solution of the equation

N∑
n=1

xt,n Wt,n(Pt) = Pt . (2.2)

The dynamics defined by equations (2.1) and (2.2) describe an exogenously growing economy.
This may be seen by summing (2.1) over all agents, to obtain the dynamics of the total wealthWt,

Wt = Wt−1 (1 + rf ) + (Pt + Dt − Pt−1 (1 + rf )) . (2.3)

The first term in the right-hand side of (2.3) represents an “exogenous” expansion of the economy
due to the continuous injection of new shares of the riskless asset, whose price remains unchanged
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under the assumption of totally elastic supply. The constant positive riskless returnrf is responsible
for this expansion. The second term represents the “excess” return on the risky asset. If one assumes
that the market is perfectly efficient, so that the no-arbitrage hypothesis is valid, the expected value
at timet−1 of this term has to be equal to zero, so thatEt−1[Wt] = Wt−1 (1+rf ). Consequently, the
total wealth is characterized by an unbounded steady increase driven by the exogenous parameter
rf . It is convenient to remove this exogenous economic expansion from the dynamics of the model.
To this end we introduce the rescaled variables

wt,n =
Wt,n

(1 + rf )t
, pt =

Pt

(1 + rf )t
, et =

Dt

Pt−1 (1 + rf )
. (2.4)

The market intertemporal relations written in terms of these new variables read

pt =
N∑

n=1

xt,n wt,n , (2.5)

wt,n = wt−1,n + wt−1,n xt−1,n

(
pt

pt−1

− 1 + et

)
∀n ∈ {1, . . . , N} . (2.6)

The last equation shows that investment in the risky asset brings about the change in the agent’s
(rescaled) wealth through the dividend yieldet and also through the capital gain (loss) represented
by the (rescaled) price returnrt = pt/pt−1 − 1. The relationship ofrt with the return of unscaled
pricesRt can be obtained from (2.4) and reads

Rt =
Pt

Pt−1

− 1 = rt (1 + rf ) + rf . (2.7)

Notice that a zero return for the rescaled pricesrt = 0 corresponds to an unscaled return equal to the
risk free interest rateRt = rf .

Equations (2.5) and (2.6) give the evolution of the state variableswt,n andpt over time, provided
that the stochastic (due to random dividend paymentDt) yield process{et} is given and the set
of investment shares{xt,n} is specified. Concerning the former, the analysis of historical observa-
tions1 suggests that the yield is a bounded positive variable whose behavior is roughly stationary and
independent of price. Thus we will require:

Assumption 1. The dividend yieldset are i.i.d. random variables obtained from a common distribu-
tion with positive support, mean valuēe and varianceσ2

e .

This assumption is common to a number of studies in the literature, e.g. Chiarella and He (2001),
thus it allows us to maintain comparability with previous investigations. The final ingredient, the
specification of agents’ investment shares, is provided in the next Section.

2.1 Investment functions and EWMA estimators

In order to obtain a complete description of the evolution of the economy, one has to supplement the
price and wealth dynamics described in (2.5) and (2.6) with the specification of the variables which
describe the investment decisions of agents,xt,n. We assume that these variables are idiosyncratic,
endogenous and independent of the contemporaneous price and wealth levels. Important examples

1See, for instance, the data set on the Standard & Poor’s500 index by Robert Shiller available online
http://www.econ.yale.edu/˜shiller/data.htm.
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of behaviors compatible with this specification include demand functions derived as a solution of
an expected utility maximization problem with power utility function (implying CRRA behaviors).
At the same time, this assumption rules out CARA-type behavior and also other possible dependen-
cies in the determination of portfolio composition of agents, like an explicit relation of the present
investment choice with the past investment choices or with the investment choices of other traders.

Furthermore, since we are mainly interested in the analysis of the effects ofspeculativebehavior
on the aggregate market performance, we leave aside those features which may occur under asym-
metric knowledge of the underlying fundamental process. Thus, we assume that the structure of the
yield process defined in Assumption 1 is known to everybody. Along the same lines, we assume
that all agents base their investment decisions at timet + 1 exclusively on the public information
setIt formed by past realized price returns,It = {rt, rt−1, . . . }. In this way past realizations of
the yield process do not affect agents’ decisions, which instead adapt to observed price fluctuations.
One can refer to this investment behavior, common in the agent-based literature (e.g. Brock and
Hommes (1998)), as“technical trading”, stressing the similarity with trading practices observed in
real markets.

Notwithstanding these restrictions, consideration of investment decisions based on the whole
information setIt would require, in a dynamic setting, to keep track of the entire past history of the
market. In mathematical terms, this would lead to an infinite-dimensional dynamical system. To
overcome this difficulty, and in line with the tradition of the agent-based literature, in the present
paper we assume that the investment choice of each agent is obtained as a result of a two-step
procedure2: in the first step the agent uses some set of estimators to form expectations about future
price behavior starting from the information setIt; in the second step these expectations are plugged
into an agent-specific choice function. If the estimators used in the first step admit arecursive
definition, the description of the dynamics can be reduced to a low-dimensional system. In this paper
we restrict our analysis to the case of exponentially weighted moving average (EWMA) estimators
for the return and its variance. We introduce:

Assumption 2. For each agentn there exists a parameterλn ∈ [0, 1) so that the agent’s investment
share can be obtained by means of a deterministic smoothinvestment functionfn as

xt+1,n = fn

(
yt,n, zt,n

)
, (2.8)

whereyt,n andzt,n are the expectations about future price return and variance obtained from infor-
mation setIt as follows

yt,n = (1− λn)
∑∞

τ=0
λτ

n rt−τ ,

zt,n = (1− λn)
∑∞

τ=0
λτ

n

(
rt−τ − yt−τ,n

)2
.

(2.9)

The functionfn on the right-hand side of (2.8) gives a complete description of the investment de-
cision of agentn. The knowledge about the fundamental process, being complete and time invariant,
is not explicitly inserted into the information set, rather it is considered embedded in the functionfn

itself, defined on the set[−1, +∞)× [0, +∞).
The decay factorλn is a sort of “memory” parameter that determines how the relative weights

in the averages (2.9) are distributed across more recent and older observations. The weights are
declining geometrically into the past, so that the last available observationrt has the highest weight.
The valueλ = 0 corresponds to the case of thenäıve forecast, i.e. to that of the agent who uses

2The case with arbitrary investment functions mapping afinitebut arbitrarily large past returns history into the future
investment choice is considered in Anufriev and Bottazzi (2005).
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the last realized return as a predictor for the next period return. The use of the EWMA estimators
seems reasonable in a dynamical setting where agents take into consideration the possibility that the
“mood” prevailing in the market may change over time, so that more recent values of the price return
could contain more information about future prices than the older ones3. The estimators (2.9) admit
the recursive definition,

yt,n = λn yt−1,n + (1− λn) rt ,

zt,n = λn zt−1,n + λ2
n (1− λn)

(
rt − yt−1,n

)2
.

(2.10)

which will be used below in order to reduce the dimension of the dynamical system governing market
evolution.

2.2 The dynamical system for wealth shares and price return

The dynamics described by (2.5) and (2.6) imply a simultaneous determination of the equilibrium
pricept and of the agents’ wealthwt,n. Due to this simultaneity, theN + 1 equations in (2.5) and
(2.6) define the state of the system at timet only implicitly4.

The transformation of the implicit dynamics into economically meaningful explicit dynamics,
i.e. dynamics where the asset prices remain positive, is not generally possible and entails further
constraint on the set of market positions allowed to agents. The next Proposition derives these
constraints and provides an explicit description of the dynamical system defined in (2.5) and (2.6).
Before that, let us introduce some notation that will prove useful in formulating the market dynamics
in a more compact form. Letan be an agent-specific variable, possibly dependent on timet. We
denote with

〈
a
〉

t
its wealth weighted average, on the population of agents, at timet, i.e.

〈
a
〉

t
=

∑N
n=1 an wt,n

wt

=
N∑

n=1

an ϕt,n , where wt =
N∑

n=1

wt,n (2.11)

represents the total wealth in the economy andϕt,n = wt,n/wt is then-th agent’s wealth share.

Proposition 2.1. Let us assume that initial pricep0 is positive. Under Assumption 2, from equations
(2.5) and (2.6) it is possible to derive a mapRN

+ → RN
+ that describes the evolution of wealth

wt,n ∀n ∈ {1, . . . , N} with positive pricespt ∈ R+ ∀t > 0 provided that
(〈

xt

〉
t
− 〈

xt xt+1

〉
t

) (〈
xt+1

〉
t
− (1− et+1)

〈
xt xt+1

〉
t

)
> 0 ∀t . (2.12)

If this is the case, the growth rate of the (rescaled) pricert+1 = pt+1/pt − 1 reads

rt+1 =

〈
xt+1 − xt

〉
t
+ et+1

〈
xt xt+1

〉
t〈

xt (1− xt+1)
〉

t

, (2.13)

the individual growth rates of the (rescaled) wealthρt+1,n = wt+1,n/wt,n − 1 are given by

ρt+1,n = xt,n

(
rt+1 + et+1

) ∀n ∈ {1, . . . , N} , (2.14)

3The EWMA estimators are widely applied by real market participants in their forecasting activity, see e.g. the
technical document of the RiskMetrics GroupTM (J.P.Morgan, 1996), and were also employed in the theoretical models
of Gaunersdorfer (2000) and Bottazzi (2002).

4TheN variableswt,n defined in (2.6) appear on the right-hand side of (2.5), and, at the same time, the variablept

defined in (2.5) appears on the right-hand side of (2.6).
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and the agents’ (rescaled) wealth sharesϕt,n evolve accordingly to

ϕt+1,n = ϕt,n
1 + (rt+1 + et+1) xt,n

1 + (rt+1 + et+1)
〈
xt

〉
t

∀n ∈ {1, . . . , N} . (2.15)

Proof. See appendix A.

The market evolution is explicitly described by the system ofN + 1 equations in (2.13) and
(2.14), or, equivalently, in (2.13) and (2.15). The price dynamics can be derived from (2.13) in a
straight-forward manner, but the price will stay positive only as long as two requirements are met.
First, the initial pricep0 is positive and, second, the inequality in (2.12) is fulfilled at each time step.
It may be quite cumbersome to analytically investigate the latter condition in total generality. From
a practical point of view, it is better to make this condition stronger and, at the same time, to simplify
it. A possibility is provided by the following

Proposition 2.2. Consider the system defined in Proposition 2.1. If there exist two real valuesxmin

andxmax such that

0 < xmin ≤ xt,n ≤ xmax < 1 and et ≥ 0 , ∀t , ∀n ∈ {1, . . . , N} , (2.16)

then condition(2.12)is always satisfied and the dynamics of(2.13)and (2.15)are bounded, that is
there exist constantsrmin, rmax, ρmin andρmax, such that

rmin ≤ rt ≤ rmax and ρmin ≤ ρt,n ≤ ρmax ∀t , ∀n ∈ {1, . . . , N} .

Proof. See appendix B.

Thus, if all possible investment choices are confined on some compact subinterval in(0, 1), then
equations (2.13) and (2.15) give well-defined dynamics in terms of price and wealth shares.

The issue of the positiveness of the initial price deserves a brief discussion. Notice that this
assumption is often not binding, since it can be satisfied for (almost) any set of initial investment
shares by means of an appropriate choice of the initial wealth, which is not restricted to be positive.
Let us consider, for example, the case of a market with a single agent possessing an initial endowment
of B0 bonds and1 equity (i.e. the total supply of equities). Ifx0 is the share of wealth the agent
decides to invest in the risky security, the price is the solution of the equation

x0 (B0 + P0) = P0 . (2.17)

The left- and the right-hand sides of this equation are linear functions ofP0 and the equilibrium price
is defined as the intersection of these two straight lines. One immediately sees that ifx0 ∈ (0, 1), the
price is positive whenB0 > 0. On the other hand, for eitherx0 > 1 or x0 < 0, the price is positive
whenB0 < 0, i.e. when the agent has a “debt” in the riskless security. Finally, if the investment
share is0 or 1, a positive price cannot be fixed.

Summarizing, in this Section we have derived the evolution of price and wealth in a market de-
fined by Assumption 1 and populated by agents behaving in accordance with Assumption 2. This
framework covers a considerable extent of possible behavioral specifications. While the set of avail-
able estimators used by agents is fixed, we allow agents to have heterogeneous expectations (different
values of the parameterλ) and different and completely arbitrary investment functionsfn. At the
same time, our market structure is defined in such a way that the dynamics in (2.13) and (2.15) do
not depend on the price level directly, but, instead, are defined in terms of price return and dividend
yield. Since in these equations only the wealth ratios defined in (2.11) appear, and these are insensi-
tive to a homogeneous rescaling of the wealth levels, the equilibria of the model can be identified as
states of steady expansion (or contraction) of the economy.
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3 The Economy with Homogeneous Agents

In this Section we perform the equilibrium and stability analysis of the dynamics derived above
for the simplest situation in which traders possess homogeneous beliefs and preferences, in other
words, share the same investment function. It is clear from (2.1) that, in this case, the dynamics of
the economy are equivalent to those obtained when a single agent operates in the market, i.e. when
N = 1. We consider this “single agent” case at length, due to its relevance for the heterogeneous
agent case discussed later.

We start with the analysis of a single agent whose investment function5 f only depends on esti-
mated future price returny. Subsequently, we extend the analysis to an investment function which
also depends on the estimated variancez, as in (2.8). Splitting the investigation into two steps helps
in understanding the different effects that the dependence ony andz has on the market dynamics.
Before starting our analysis, it is useful to introduce the following

Definition 3.1. TheEquilibrium Market Line(EML) is the functionl(r) defined according to

l(r) =
r

ē + r
, (3.1)

whereē stands for the mean yield value as defined in Assumption 1.

3.1 Investment based on forecasted return

In the single agent case the dynamical system describing the market evolution can be simplified
since the explicit evolution of the wealth shares in (2.15) is not needed. Substituting (2.13) into the
first equation in (2.10) we reduce the market evolution to a two-dimensional stochastic system





xt+1 = f(yt) ,

yt+1 = λyt + (1− λ)
f(yt)− xt + et+1 xt f(yt)

xt (1− f(yt))
.

(3.2)

The dynamics of the price return (2.13) is responsible for the fraction on the right-hand side of the
second equation. The stochastic nature of (3.2) originates from the random dividend yield{et}.
In order to study the asymptotic properties of the system, we replace the realizations of the yield
process by its mean valuēe and consider the fixed points of the resultingdeterministic skeleton. The
next result characterizes the existence and location of these fixed points6.

Proposition 3.1. Let (x∗, y∗) be a fixed point of the deterministic skeleton of system(3.2). Then:

(i) The equilibrium returnr∗ and the equilibrium investment sharex∗ satisfy

l(r∗) = f(r∗) , x∗ = f(r∗) , (3.3)

and the equilibrium value of the predictor coincides with the equilibrium price return,y∗ = r∗.

(ii) The equilibrium is feasible, i.e. the prices are positive, if eitherx∗ < 1 or x∗ > 1/(1− ē).

(iii) The equilibrium growth rate of agent’s wealth is equal to price return,ρ∗ = r∗.

5Since only one agent is present in the market, we omit the index1 from any agent-specific variable.
6All following results are valid under the condition thatē < 1 which seems robustly satisfied by real data.
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Proof. See appendix C.

According to Proposition 3.1(i) the equilibrium price returnr∗ coincides with the prediction of
the EWMA estimatory∗. This is an important consistency result which must hold for any meaningful
economic dynamics. Equations (3.3) provide a simple geometric characterization of all possible
equilibria: they can be obtained as the intersections of the investment functionf with the Equilibrium
Market Linel defined in (3.1). Notice that the EML is made of two branches separated by a vertical
asymptote at−ē. Thus, forr∗ = −ē no equilibria exist. Indeed, if the positive dividend yield were
exactly offset by a negative price return, the (rescaled) wealth of the agent would be constant over
time and the investment share would increase, unboundedly, at a rate1 − ē. Proposition 3.1(ii)
shows that not all equilibria are economically meaningful, though. Provided that initial price is
positive, the equilibrium return generates positive prices only in those equilibria wherer∗ > −1,
or, equivalently, wherex∗ belongs to the intervals(−∞, 1) or (1/(1 − ē), +∞). This condition
is, indeed, the equilibrium version of inequality (2.12). Finally, Proposition 3.1(iii) states that the
growth rate of the agent’s wealth coincides with the price return in the equilibrium.

In the left panel of Fig. 1 two investment functions (thick lines) are reported. The equilibria
are identified as the intersections of these curves with the EML (thin line). The abscissa of the
intersection gives the value of the equilibrium returnr∗ while the ordinate gives the equilibrium
investment sharex∗. One can distinguish between three qualitatively different scenarios.

For those equilibria withr∗ ∈ [−1,−ē) the investment in the risky asset is characterized by
negative gross return (r∗ + ē < 0) and the agent constantly borrows resources to invest in the risky
asset (x∗ > 1). In these equilibria the total wealth grows at a negative rate7 and, according to the
example on page 8, the agent possesses a negative amount of the riskless security.

If r∗ ∈ (−ē, 0), the capital gain on the risky asset is negative, nevertheless the gross return
is positive due to the dividend yield. Agent invests a negative share of wealth in the risky asset
(x∗ < 0) but the total wealth is also negative to guarantee positiveness of prices (cf. (2.5)) and grows
at a negative rate. This is the case of equilibriumS2 of the linear investment function in the left panel
of Fig. 1.

Finally, if r∗ ∈ (0, +∞), the price return is positive, a positive fraction of wealth is invested in
the risky asset (x∗ ∈ (0, 1)) and the agent’s wealth return is positive. This is the case of equilibrium
U2 of the linear investment function and equilibriaS1 andU1 of the nonlinear function in the left
panel of Fig. 1.

While the equilibria do not depend on the agent’s forecast parameterλ, this parameter is impor-
tant in deciding their stability, as we show in the following

Proposition 3.2. The fixed point(x∗, y∗) of the deterministic skeleton of system(3.2) is (locally)
asymptotically stable if

f ′(r∗)
l′(r∗)

1

r∗
<

1

1− λ
,

f ′(r∗)
l′(r∗)

< 1 and
f ′(r∗)
l′(r∗)

2 + r∗

r∗
> − 1 + λ

1− λ
. (3.4)

wheref ′(r∗) andl′(r∗) stand for the first derivative of the investment functionf(y) and of the EML
l(r) computed in equilibrium, respectively.

The equilibrium is unstable if at least one of the inequalities in(3.4) holds with the opposite
(strict) sign. The stability is lost through aNeimark-Sacker, fold or flip bifurcation if the first, the
second or the third inequality in(3.4), respectively, is violated.

Proof. See appendix D.
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Figure 1: Equilibria and stability for the single agent system.Left panel: the equilibria for two different
investment functions (thick lines) defined as the intersection with the EML (thin line).Right panel: equilib-
rium stability region for two different values ofλ in coordinatesr∗ andf ′(r∗)/l′(r∗). Forλ = 0.1, the fixed
point is locally stable if(r∗, f ′/l′) belongs to the dark-gray region. When the value ofλ increases to0.6, the
stability region expands and becomes the union of the dark-gray and light-gray areas.

This Proposition highlights the role of the parametersλ, r∗ and the relative slope of the invest-
ment function w.r.t. the EML,f ′(r∗)/l′(r∗), for the local stability of the equilibria. The stability
regions in terms ofr∗ andf ′(r∗)/l′(r∗) for two different values ofλ are shown in the right panel of
Fig. 1 as differently shaded gray areas. The stability region increases together with the value ofλ.
This parameter plays an important role in the stability of the system. Indeed, since the value ofλ
does not affect the position of the fixed point, any equilibrium withf ′/l′ < 1 andr∗ 6= 0 becomes
stable whenλ takes a sufficiently large value.

The right panel of Fig. 1 also shows the types of bifurcation exhibited when one of the stability
conditions in (3.4) is violated. For relatively small absolute values of the equilibrium return the
system can lose stability through either a flip or a Neimark-Sacker bifurcation. In this case, if
the system is perturbed away from equilibrium, for example, by a small shock to the investment
share, the large absolute value off ′ is responsible for an amplification of this perturbation, based
on the feedback mechanism linking investment share and market return, which ultimately leads
to oscillatory behavior of the system. For larger absolute values of the equilibrium return, if the
investment function is steeper at the equilibrium than the EML, the equilibrium is lost through a fold
bifurcation, which implies local exponential growth of the price returns. Notice that equilibriaU1

andU2 in Fig. 1 (left panel) can be immediately recognized as unstable, since they clearly violate
the second inequality in (3.4).

3.2 Investment based on forecasted return and variance

Let us now move to the case of a single agent whose investment function depends on both estimators
defined on page 6. One can see this as an extension of the previous analysis to the case of an
agent who takes investment decisions based on both expected profit and the endogenous component
of risk. Indeed, notice that (2.14) explicitly identifies two different risks components in the profit
coming from investment in the risky asset: the stochastic yield process{et} and the possibly volatile

7Remember that the analysis is performed with respect to the rescaled variables as defined in (2.4). Negative return
corresponds to the return less thanrf in terms of the unscaled variables.
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return dynamics{rt}. The former is assumed exogenous (Assumption 1) and perfectly known to
agent (Assumption 2). The latter is, on the contrary, endogenous and not perfectly known. The
EWMA estimatorzt introduced in (2.9) can be thought of as a measure of this second component of
risk. Combining (2.8), (2.10) and (2.13), one gets the following three-dimensional system:





xt+1 = f(yt, zt) ,

yt+1 = λyt + (1− λ)
f(yt, zt)− xt + et+1 xt f(yt, zt)

xt (1− f(yt, zt))
,

zt+1 = λzt + λ2(1− λ)

[
f(yt, zt)− xt + et+1 xt f(yt, zt)

xt (1− f(yt, zt))
− yt

]2

.

(3.5)

The following result implies that the EML can still be used for the characterization of equilibria.

Proposition 3.3. Let (x∗, y∗, z∗) be a fixed point of the deterministic skeleton of system(3.5)and let
r∗ denote the price return at this point. Then:

(i) The equilibrium returnr∗ and the equilibrium investment sharex∗ satisfy

l(r∗) = f(r∗, 0) , x∗ = f(r∗, 0) . (3.6)

The equilibrium value of the return estimator coincides with the equilibrium price return,
y∗ = r∗, while the equilibrium value of the variance estimator is zero,z∗ = 0.

(ii) The equilibrium is feasible, if eitherx∗ < 1 or x∗ > 1/(1− ē).

(iii) The equilibrium growth rate of the agent’s wealth is equal to price return,ρ∗ = r∗.

All the differences between this statement and Proposition 3.1 are in the first item. The consis-
tency result for the equilibrium return estimator is confirmed and extended to the variance estimator
z∗, whose value at equilibrium becomes zero, as expected for a constant return. The conditions char-
acterizing the equilibrium investment share and return have slightly changed, because the investment
functionf now depends on two variables. However, if one considers the restriction off to the set
z = 0, the former characterization of the equilibria as the intersections with the EML is still valid.

The following result provides the conditions for the stability of the equilibria.

Proposition 3.4. The fixed point(x∗, y∗, z∗) of the deterministic skeleton of system(3.5) is (locally)
asymptotically stable if

f ′y(r
∗, 0)

l′(r∗)
1

r∗
<

1

1− λ
,

f ′y(r
∗, 0)

l′(r∗)
< 1 and

f ′y(r
∗, 0)

l′(r∗)
2 + r∗

r∗
> − 1 + λ

1− λ
, (3.7)

wheref ′y is, in usual notation, the partial derivative of the investment function with respect to the
first variabley andl′ is the first derivative of the EML.

The equilibrium is unstable if at least one of the inequalities in(3.7) holds with the opposite
(strict) sign. The system exhibits aNeimark-Sacker, fold or flip bifurcation if the first, the second or
the third inequality in(3.4), respectively, becomes an equality.

Proof. See appendix E.
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Sincef ′y(r
∗, 0) is exactly the derivative of the restriction off to the setz = 0, it is clear that this

restriction reduces this last Proposition to Proposition 3.2.
The most interesting result of Proposition 3.4 is that the introduction of a measure of endoge-

nous risk into the agent’s investment function, albeit changing (in general) the global behavior of
the system, does not have any qualitative impact on the local dynamics in the neighborhood of an
equilibrium8. This is not to say that investor’s attitude towards risk is irrelevant for the stability of
the system. Risk aversion is a property of the specific functional form of the investment function,
something that cannot be investigated here. The point of the last two Propositions is that for any
investment functionf(y, z) there exists an “equivalent” function depending solely on the estimator
y, namelyf(y, 0), that provides all the information concerning the allowed equilibria and their local
stability. As an example in Section 5.1 will demonstrate, if a specific investment function contains a
risk aversion parameter, this parameter will in general affect its restriction to thez = 0 plane.

4 The Economy with Heterogeneous Agents

In this Section we consider the case in which many heterogeneous agents, with different investment
functions, operate in the market. All these functions depend on the EWMA estimators of future price
dynamics, but we allow the parameters of these estimators to differ among agents.

4.1 The dynamical system

The main difference of the heterogeneous setting with respect to the single agent case concerns the
role of the wealth dynamics. Indeed, the evolution of wealth shares is no longer decoupled from the
dynamics of price and, consequently, both (2.13) and the entire set of equations in (2.15) become
relevant. Under the conditions in Assumption 2 the evolution of the economy can be described in
terms of the variablesxt,n, yt,n andzt,n for n ∈ {1, . . . , N} and ofϕt,n for n ∈ {1, . . . , N − 1} as in
the following

Lemma 4.1. The dynamics defined by(2.13)and (2.15)with investment choices(2.8) can be de-
scribed by means of the following system of4N − 1 first-order difference equations

X :




xt+1,1 = f1

(
yt,1, zt,1

)
...

...
...

xt+1,N = fN

(
yt,N , zt,N

)

Y :




yt+1,1 = λ1 yt,1 + (1− λ1) rt+1
...

...
...

yt+1,N = λN yt,N + (1− λN) rt+1

(4.1)

Z :




zt+1,1 = λ1 zt,1 + λ2
1 (1− λ1)

(
rt+1 − yt,1

)2

...
...

...

zt+1,N = λN zt,N + λ2
N (1− λN)

(
rt+1 − zt,N

)2

W :




ϕt+1,1 = Φ1

(
xt,1, . . . , xt,N ; ϕt,1, . . . , ϕt,N−1; et+1; rt+1

)
...

...
...

ϕt+1,N−1 = ΦN−1

(
xt,1, . . . , xt,N ; ϕt,1, . . . , ϕt,N−1; et+1; rt+1

)

8This result is in line with Gaunersdorfer (2000) who shows, in a model with CARA-type investors, that the memory
parameter associated with the forecasting of price return variance does not affect the local dynamics around equilibria.
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where

Φn

(
x1, x2, . . . , xN ; ϕ1, ϕ2, . . . , ϕN−1; e; r

)
= ϕn

1 + (r + e) xn

1 + (r + e)
∑N

m=1 ϕm xm

, (4.2)

for n ∈ {1, . . . , N − 1} and where the price returnrt+1 is

rt+1 =

∑N
n=1 ϕt,n

(
fn(yt,n, zt,n)

(
1 + et+1 xt,n

)− xt,n

)

∑N
n=1 ϕt,n xt,n

(
1− fn(yt,n, zt,n)

) (4.3)

with

ϕt,N = 1−
∑N−1

n=1
ϕt,n . (4.4)

The equations are arranged in four separate blocks:X , Y, Z andW. The N equations in
blockX give the investment choices of theN agents, according to (2.8). BlocksY andZ contain
theN recursive relations (2.10) describing the evolution of the EWMA estimates of return and its
variance, respectively, for the different agents. The evolution of the wealth shares is described by the
equations in blockW; notice that the number of independent wealth shares in the system isN − 1.
The evolution of price return is provided by (4.3) in accordance with (2.13).

The rest of this Section is devoted to the analysis of thedeterministic skeletonof (4.1) obtained
replacing the yield process{et} by its mean valuēe.

4.2 Determination of the equilibria

The characterization of the fixed points of the system (4.1) is, in many respects, similar to the single
agent case discussed in Sec. 3. Let

x∗ =
(
x∗1 , . . . , x∗N ; y∗1 , . . . , y∗N ; z∗1 , . . . , z∗N ; ϕ∗1 , . . . , ϕ∗N−1

)

denote an equilibrium and letr∗ be the associated equilibrium return. We introduce the following

Definition 4.1. Agentn is said to“survive” in x∗ if his wealth share is strictly positive,ϕ∗n > 0.
Agentn is said to“dominate” the economy, if he is the only survivor in the economy, so thatϕ∗n = 1.

One can recognize the parallel between our definition above and the framework developed in
DeLong et al. (1991). Indeed, we adopt here the deterministic version of the concepts of survival
and dominance used in that paper.

The following statement characterizes all possible equilibria of system (4.1).

Proposition 4.1. Letx∗ be a fixed point of the deterministic skeleton of system(4.1). Then

y∗n = r∗ , z∗n = 0 , x∗n = fn(r∗, 0) ∀n ∈ {1, . . . , N} , (4.5)

and the following three mutually exclusive cases are possible:

(i) Survival of a single agent.In x∗ only one agent survives and, therefore, dominates the econ-
omy. Without loss of generality we can assume this agent to be agent1 so that for the equilib-
rium wealth shares one has

ϕ∗n =

{
1 if n = 1

0 if n > 1
. (4.6)
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The equilibrium returnr∗ satisfies the following equation

l(r∗) = f1(r
∗, 0) , (4.7)

and coincides with the growth rate of the wealth of the survivor,ρ∗1 = r∗.

(ii) Survival of many agents.In x∗ more than one agent survives. Without loss of generality we
can assume that the survivors are the firstk agents (withk > 1) so that the equilibrium wealth
shares satisfy

{
ϕ∗n ∈ (0, 1) if n ≤ k ,

ϕ∗n = 0 if n > k
,

k∑
n=1

ϕ∗n = 1 . (4.8)

The equilibrium returnr∗ satisfies the followingk equations

l(r∗) = fn(r∗, 0) ∀n ∈ {1, . . . , k} , (4.9)

so that the firstk agents possess, at equilibrium, the same investment sharex∗1¦k = l(r∗). The
wealth growth rates of the survivors are equal to the price return, i.e.ρ∗n = r∗ for n ≤ k.

(iii) “No arbitrage” with many survivors. In x∗ the investment shares and wealth shares of the
agents satisfy

N∑
n=1

x∗n ϕ∗n = 0 and
N∑

n=1

ϕ∗n = 1 , (4.10)

while equilibrium returnr∗ = −ē. The wealth growth rate is zero for all the agents.

Proof. See appendix F.

Strictly speaking, item(i) of the previous Proposition can be seen as a particular case of item
(ii) . Nevertheless, the nature of the two situations is different. In the first case, when a single agent
survives, Proposition 4.1 defines a precise value for each component of the equilibriumx∗, so that a
single point is uniquely determined. In the second case, when many agents survive, there is a residual
degree of freedom in the definition of the equilibrium: while investment sharesx∗ and estimators
valuesy∗ andz∗ are uniquely defined, the only requirement on the equilibrium wealth shares of the
survivors is the fulfillment of the second equality in (4.8). Consequently, one immediately has the
following

Corollary 4.1. Consider the deterministic skeleton of system(4.1). If it possesses one equilibrium
x∗ with k survivors, it possesses ak− 1-simplex of equilibria withk-survivors constituted by all the
points obtained fromx∗ through a change in the relative wealths of the survivors.

Thus, Proposition 4.1(ii) does not define a single equilibrium point, but an infinite set of equilib-
ria. If the survivors are the firstk agents as in (4.8), this set can be written as





(
x∗1, . . . , x

∗
N ; r∗, . . . , r∗︸ ︷︷ ︸

N

; 0, . . . , 0︸ ︷︷ ︸
N

; ϕ1, . . . , ϕk, 0, . . . , 0︸ ︷︷ ︸
N−1−k

) ∣∣∣∣
k∑

j=1

ϕj = 1, ϕj ≥ 0



 .

The particular fixed point eventually chosen by the system will depend on the initial conditions. We
will see below that the partially indeterminate nature of the many survivors equilibria will have a
major effect also on their stability.
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The differences among the first two items of Proposition 4.1 do not concern exclusively the geo-
metrical nature of thelocusof equilibria. Indeed, while in the first case no requirements are imposed
on the behavior of the investment function of the different agents, in the second type of solutions
all the investment sharesx∗1, . . . , x

∗
k mustat the same timebe equal to a single valuex∗1¦k. Thus,

the equilibrium withk > 1 survivors exists only in the particular case in whichk investment func-
tionsf1, . . . , fk satisfy this restriction. This implies that an economy composed ofN agents having
generic, so to speak “randomly defined”, investment functions, has probability zero of displaying any
equilibrium with multiple survivors. In other words, the many survivors equilibria are non-generic.

While the first two types of equilibria derived in Proposition 4.1 are related to single agent
equilibria, the equilibria described in item(iii) are completely new. In these equilibria many agents
survive, and their investment and wealth shares are “balanced” in such a way that the capital gain and
the dividend yield offset each other so that the riskless and the risky assets have the same expected
return. As opposed to the situation described in Proposition 4.1(ii) , these are generic equilibria
with many survivors. It is easy to check that the only requirement for the existence of no-arbitrage
equilibrium is the co-existence of two agents in the market, one with positive and one with negative
investment share9. Furthermore, if this condition is satisfied, then all no-arbitrage equilibria belong
to the followingN − 2-dimensional manifold




(
x∗1, . . . , x

∗
N ;−ē, . . . ,−ē︸ ︷︷ ︸

N

; 0, . . . , 0︸ ︷︷ ︸
N

; ϕ1, . . . , ϕN−1−k

) ∣∣∣∣
N∑

j=1

ϕj = 1 ,

N∑
j=1

ϕjx
∗
j = 0 , ϕj ≥ 0



 .

The geometrical interpretation of the market equilibria presented in Section 3 can be extended to
illustrate how equilibria with many agents are determined. As an example consider again the left
panel in Fig. 1 and suppose that the two investment functions shown there belong to two agents who
are simultaneously trading in the market. According to Proposition 4.1 all possible equilibria are the
intersections of the different investment functions with the EML (cf. (4.7) and (4.9)), which, how-
ever, has to be supplemented by the vertical line at−ē to illustrate also the no-arbitrage equilibria.
In this example there are four equilibria with single survivor. In two of them (S1 andU1) the first
agent, with non-linear investment function, survives such thatϕ∗1 = 1 (and obviouslyϕ∗2 = 0). In the
other two equilibria (S2 andU2) the second agent, with linear investment function, survives so that in
these pointsϕ∗1 = 0. In each equilibrium, the intersection of the investment function of the surviving
agent with the EML gives both the equilibrium return and the equilibrium investment share of the
survivor. The equilibrium investment share of the non-surviving agent can be found, in accordance
with the last relation in (4.5), as the intersection of his/her own investment function with the vertical
line passing through the equilibrium return. Since the two investment functions shown in Fig. 1 do
not possess common intersections with the EML, the equilibria of the second type are impossible
in this case. There exist, however, one no-arbitrage equilibrium withr∗ = −ē which geometrically
can be represented by the two pointsA1 andA2 showing the corresponding investment shares of the
agents. The equilibrium wealth shares of the two agents can be derived from (4.10).

An example of investment functions which allow for multiple survivors equilibria is given in the
left panel of Fig. 2. The abscissa of the common intersections of the different investment functions
with the EML defines the return in the case of equilibria with multiple survivors. In each equilibrium,
all the survivors invest the same share of wealthx∗1¦k in the risky asset, determined as the ordinate of
the intersection. The wealth shares of the survivors should satisfy (4.8). The non surviving agents
(like the agent with investment function I in equilibriumS2 or the agent with investment function
III in equilibrium U1) have zero wealth shares. Their investment shares are the intersections of their
investment functions with the vertical line passing through the equilibrium return.

9Essentially, this is the reason why no-arbitrage equilibria do not exist in the single agent case.
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Figure 2: Equilibria and stability for the many agents system.Left panel: Non-generic situation with3
agents operating in the market. In equilibriaS2 andU1 two agents survive.Right panel: Generic situation
with 2 agents operating in the market. The region where condition (4.12) is satisfied is shown in gray.

4.3 The stability conditions of the equilibria

Among the different equilibria characterized in the previous Section, which are the ones eventually
selected by the market? This Section answers this question presenting the results of the local sta-
bility analysis for all possible equilibria. The first Proposition below provides the stability region
in the parameter space for the generic case of one single survivor. The non-generic case of many
survivors is addressed in the second Proposition, where the destabilizing effect of the existence of
an entire hyperplane of equilibria is revealed. Finally, in the third Proposition we derive the stabil-
ity conditions for no-arbitrage equilibria with many survivors. The derivation of these Propositions
requires quite cumbersome algebraic manipulations and we refer the reader to Appendix G for the
intermediate Lemmas and the final proofs. The discussion concerning economic interpretation of
the results, analysis of their consequences for the aggregate behavior of the system and comparison
with other contributions to the literature are postponed to the next Section.

For the generic case of a single survivor equilibrium we have the following

Proposition 4.2. Letx∗ be a fixed point of the deterministic skeleton of system(4.1)associated with
a single survivor equilibrium. Without loss of generality we can assume(4.6), i.e. that the first agent
is the survivor. Thenx∗ is (locally) asymptotically stable if

f ′1,y(r
∗, 0)

l′(r∗)
1

r∗
<

1

1− λ1

,
f ′1,y(r

∗, 0)

l′(r∗)
< 1 ,

f ′1,y(r
∗, 0)

l′(r∗)
2 + r∗

r∗
> − 1 + λ1

1− λ1

(4.11)

wheref ′1,y denotes the partial derivative of investment functionf1 with respect to the expected return,
and if

−2− r∗ < x∗n
(
r∗ + ē

)
< r∗ , ∀n > 1 . (4.12)

The equilibriumx∗ is unstable if at least one of the inequalities in(4.11)or in (4.12)holds with the
(strict) opposite sign.

The system exhibits aNeimark-Sackerbifurcation if the first inequality in(4.11) becomes an
equality, afold bifurcation if the second inequality in(4.11)or one of theN − 1 right-hand inequal-
ities in (4.12)becomes an equality and aflip bifurcation if the third inequality in(4.11)or one of the
N − 1 left-hand inequalities in(4.12)becomes an equality.
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The stability conditions for a generic single-survivor equilibrium contain two requirements. On
the one hand, the stable equilibrium should be “self-consistent”, i.e. it should remain stable even
if any non-surviving agent is removed from the economy. Indeed the three inequalities in (4.11)
coincide with the corresponding conditions in (3.7) as if the survivor would operate alone in the
market. This is however not enough. A further requirement comes from the inequalities in (4.12).
In particular, notice that in those equilibria wherer∗ > −ē, i.e. where the overall wealth of the
economy grows10, the surviving agent must be the most aggressive one, i.e. the one who, among
all agents, invests the highest wealth share in the risky asset. On the other hand, in those equilibria
wherer∗ < −ē, i.e. in which the overall wealth of the economy shrinks, the survivor has to be the
least aggressive investor.

For the single survivor equilibrium the role of the “memory” parameterλ is similar to what found
for the single agent case in Proposition 3.4. The equilibrium stability domain increases with the
value of the survivor’sλ. In the case of heterogeneous agents, however, the scope of this statement is
restricted by an important caveat: if the additional condition in (4.12) is not satisfied, the equilibrium
remains unstable irrespectively of the value ofλ.

Let us revert once again to the EML “plot” to obtain a geometrical illustration of the many-agents
stability conditions. In the right panel of Fig. 2 we draw two investment functions, one linear and
one non-linear. The region where condition (4.12) is satisfied is reported in gray. Suppose that the
market is populated by two agents whose investment decisions are respectively described by these
two functions. Notice that they are the same functions appearing in the left panel of Fig. 1 and that
were discussed in Section 3.1. Proposition 4.1 allowed us to identify four possible equilibria with
one survivor:S1, S2, U1 andU2. First, notice that the dynamics of the two-agent system cannot be
attracted byU1 or U2. Since these equilibria were unstable in the respective single-agent cases, they
cannot be stable when both agents are present in the market. Assume thatS1 andS2 would be stable
equilibria if the first and the second function, respectively, were present alone in the market. Then,
from Proposition 4.2, it follows thatS1 is the only stable equilibrium of the system with two agents.
Notice, indeed, that for a value ofr equal to the abscissa ofS1, i.e. equal to the equilibrium return,
the linear investment function of the non-surviving agent passes below the investment function of the
surviving agent and belongs to the gray area. On the contrary, in the abscissa ofS2, the investment
function of the non-surviving agent is higher and does not belong to the gray area. Consequently,
the latter equilibrium is unstable.

Let us move now to consider the non-generic case, whenk different agents survive in the equi-
librium. The following applies

Proposition 4.3. Letx∗ be a fixed point of the deterministic skeleton of system(4.1)belonging to a
k − 1-dimensional manifold of thek-survivors equilibria defined by(4.5), (4.8)and (4.9).

The fixed pointx∗ is never hyperbolic and, consequently, never (locally) asymptotically stable.
Its non-hyperbolic submanifold is thek − 1-simplex defined in Corollary 4.1.

The equilibriumx∗ is (locally) stable if

(i) all the roots of the following polynomial are inside the unit circle

µ

k∏
j=1

(λj − µ) +
(1 + r∗)µ− 1

x∗1¦k(1− x∗1¦k)

k∑
j=1

(
ϕ∗j f ′j,y(1− λj)

k∏

i=1,i6=j

(λi − µ)

)
, (4.13)

wheref ′j,y denotes the partial derivative of investment functionfj with respect to the estimated
returny;

10The equilibrium growth rate of the wealth of the economy coincides, of course, with the wealth growth rate of
survivor and equal, therefore, tor∗. If r∗ > 0, then the wealth of the economy is positive and growing. Ifr∗ ∈ (−ē, 0),
the economy has negative growth rate but also negative wealth. Thus, also for these equilibria the economy is growing.
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(ii) the equilibrium investment shares of the non-surviving agents satisfy

−2− r∗ < x∗n (r∗ + ē) < r∗ , k < n ≤ N . (4.14)

The equilibriumx∗ is unstable if at least one of the roots of the polynomial in(4.13) is outside
the unit circle or if at least one of the inequalities in(4.14)holds with the (strict) opposite sign.

The non hyperbolic nature of the many-survivors equilibria is a direct consequence of their non-
unique specification in Proposition 4.1(ii) . However, the motion of the system along thek − 1
dimensional subspace consisting of the continuum of equilibria leaves the aggregate properties of
the system unaltered.

The stability conditions for the many survivors equilibria generalize the stability conditions de-
rived in Proposition 4.2 for the single survivor case. Indeed, the constraints on the investment shares
of the non-surviving agents (4.14) are identical to (4.12) and the condition in the first item of Propo-
sition reduces to the inequalities (4.11) whenk = 1. This condition is simplified when survivors
possess homogeneous EWMA estimators.

Corollary 4.2. Let x∗ be a fixed point of the deterministic skeleton of system(4.1) belonging to a
k − 1-dimensional manifold ofk-survivors equilibria. If all the surviving agents possess identical
values of the EWMA parameter

λ = λ1 = · · · = λk ,

the condition (i) in Proposition 4.3 becomes
〈
f ′y

〉

l′(r∗)
1

r∗
<

1

1− λ
,

〈
f ′y

〉

l′(r∗)
< 1 ,

〈
f ′y

〉

l′(r∗)
2 + r∗

r∗
> − 1 + λ

1− λ
, (4.15)

where
〈
f ′y

〉
=

∑k
j=1 ϕ∗j f ′j,y.

The inequalities in (4.15) are identical to the stability conditions for the single-agent case, except
that one has to weight the derivatives computed in the fixed point with the wealth shares of the
surviving agents. Interestingly, this implies that an agent with an investment function generating
unstable equilibria if present alone in the market, may survive with the same function in a stable
non-generic equilibrium if other agents, with stable functions, possess, at equilibrium, high enough
wealth shares.

Finally, let us analyze the local stability of no-arbitrage equilibria withr∗ = −ē. We consider
a generic situation and allow some agents to have zero wealth share. Without loss of generality we
can assume that the firstk agents survive, wherek ≤ N .

Proposition 4.4. Let x∗ be a fixed point of the deterministic skeleton of system(4.1) belonging to
anN − 2-dimensional manifold ofk-survivors equilibria defined by(4.5)and (4.10).

If N ≥ 3, the fixed pointx∗ is non hyperbolic and, consequently, non (locally) asymptotically
stable. The equilibriumx∗ is (locally) stable if all the roots of the following polynomial are inside
the unit circle

µ

k∏
j=1

(λj − µ) +
1− µ〈

x2
〉

k∑
j=1

(
ϕ∗j f ′j,y(1− λj)

k∏

i=1,i6=j

(λi − µ)
)

, (4.16)

wheref ′j,y denotes the value of the partial derivative of investment functionfj with respect to the

expected returny in the point(−ē, 0), and
〈
x2

〉
=

∑k
n=1 ϕ∗n x∗n

2.
The equilibriumx∗ is unstable if at least one of the roots of the polynomial in(4.16) is outside

the unit circle.
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The stability of equilibria now depends exclusively on the polynomial (4.16). For specific invest-
ment functions this polynomial can be simplified and explicit stability conditions derived. For in-
stance, when all investment functions are flat at−ē, it is easy to see that the no-arbitrage equilibrium
(if it exists) is always stable. Another simplification is obtained when survivors have homogeneous
EWMA estimator.

Corollary 4.3. Let x∗ be a no-arbitrage fixed point of the deterministic skeleton of system(4.1)
belonging to anN − 2-dimensional manifold ofk-survivors equilibria. If all the surviving agents
possess identical values of the EWMA parameter

λ = λ1 = · · · = λk ,

the condition in Proposition 4.4 becomes
〈
f ′y

〉
〈
x2

〉 > − 1

1− λ
,

〈
f ′y

〉
〈
x2

〉 <
1

2

1 + λ

1− λ
, (4.17)

where
〈
f ′y

〉
=

∑k
j=1 ϕ∗j f ′j,y(−ē, 0).

According to this Corollary, for sufficiently largeλ the no-arbitrage equilibrium becomes always
stable .

5 Examples and Applications

In this Section we present two examples of how the results obtained above, and in particular the
use of the EML “plot”, can be applied to the analysis of several aspects of some heterogeneous
agent models recently discussed in the literature. In Section 5.1 we consider investment functions
based on the mean-variance approximate solution of the expected utility maximization problem with
power utility function. We discuss the effects of different agent-specific parameters on the local and
global behavior of the system, stressing the similarity with previous investigations. In Section 5.2
we take a broader approach and present a general discussion of the principles according to which,
in a heterogeneous environment, the dynamics of the market selects the investment functions that
eventually dominate the economy.

5.1 Investment functions from an approximation to power utility

As mentioned before, among the different agents’ specifications which are allowed inside our frame-
work, there are the trading behaviors derived from the maximization of expected CRRA utility.
Consider the problem that a typical agent faces at periodt before trade takes place

max
xt

E[U(Wt+1)] , s.t. Wt+1 = Wt

(
1 + xt (Rt+1 + Dt+1/Pt)

)
, (5.1)

whereU(W ) = (W 1−γ−1)/(1−γ) is a power utility function with the relative risk aversionγ > 0,
andRt+1 is the return in terms of unscaled price as in (2.7). It is well known that the solutionxt of
(5.1) is independent of the agent’s current wealthWt while it depends on agent’s expectations about
next period (gross) return. Let us assume that these expectations are expressed in terms of EWMA
estimators of price return and its variance under some ancillary assumption about the functional form
of the conditional probability density of price returns. Then the solution of the problem belongs to
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the set of investment functions satisfying Assumption 2. Unfortunately, the explicit expression of
the corresponding investment function cannot be derived for reasonable conditional distributions of
returns (e.g. normally distributed returns). In order to obtain a tractable analytic expression one
has to turn to some approximation. Following Chiarella and He (2001) we consider here the mean-
variance approximation11 of the solution of (5.1) that in terms of rescaled variables (2.4) becomes

xt =
1

γ (1 + rf )

Et−1

[
rt+1 + et+1

]

Vt−1

[
rt+1 + et+1

] , (5.2)

whereEt−1 andVt−1 stand for the agent’s expectations about mean and variance of the (rescaled)
gross return, respectively. Consistent with Assumptions 1 and 2, the first two momentsē andσ2

e

of the i.i.d. yield process are known to the traders, while the expectations about return depend on
the past market history through the EWMA estimators. More precisely, we assume the following
expressions

Et−1

[
rt+1 + et+1

]
= δ + d (yt−1 + ē) , (5.3)

Vt−1

[
rt+1 + et+1

]
= zt−1 + σ2

e . (5.4)

The linear functional form in (5.3) is equivalent to the specification analyzed in Chiarella and He
(2001) and allows for a simple interpretation: the parameterδ > 0 can be interpreted as arisk
premium, while the extrapolation parameterd characterizes the relation of present investment choice
to past market dynamics. Using this parameter one can distinguish between different stylized types
of trading behavior. A trader withd = 0 can be identified with afundamentalist, since his investment
choice is unaffected by the past return realizations. Ford 6= 0 the agent is achartist. Specifically, he
is atrend followerif d > 0 and acontrarianif d < 0. Higher values of the past returns lead to higher
investment choices for trend followers and to lower investment choices for contrarians. Plugging
(5.3) and (5.4) into (5.2) one gets the investment function

f(y, z) =
1

γ (1 + rf )

δ + d (y + ē)

z + σ2
e

. (5.5)

As the results of Section 3 imply, the location of the equilibria and their stability analysis can be
performed considering the restriction of (5.5) to the linez = 0. The restricted investment function
possesses a simple linear form

f(y, 0) = δ̃ + d̃ (y + ē) , with δ̃ =
δ

γ (1 + rf ) σ2
e

, d̃ =
d

γ (1 + rf ) σ2
e

. (5.6)

Notice that the use of a more complicated function ofz for the variance expectation in (5.4) as for
example Equation 3.2 in Chiarella and He (2001), would only lead to a rescaling of the parameters
in (5.6), proportional to the value of this function computed atz = 0.

Below we provide some examples on the use of the EML ”plot” to investigate the role of the
parameters of (5.6) in the definition of the number, location and stability of the equilibria. We do not
present a complete analysis, but starting from these examples it is easy to develop further the formal
machinery and, in particular, re-obtain the results in Chiarella and He (2001) for the case of one and
two-agent economies12.

11This is not the only mean-variance approximation, see e.g. Campbell and Viceira (2002).
12The only difference between our investment functions and the ones in Chiarella and He (2001) is that they use the

equallyweighted estimators computed on the basis of the pastL > 0 returns, instead of our EWMA estimators. Such
a difference is not important for the determination of the equilibria, however, since in any fixed point the value of the
two estimators coincides and is equal to the equilibrium return. The stability analysis is performed in Chiarella and He
(2001) only for the caseL = 1, which is a particular case of our framework corresponding toλ = 0.
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Figure 3: Equilibria in the market with investment functions based on the mean-variance solution of the
utility-maximization problem.Left panel: Three typical agent’s behaviors.Right panel: Equilibria with
three different fundamentalists.S1 is the only stable equilibrium.

In the left panel of Fig. 3 three investment functions (5.6) are shown with the same value of
δ̃ ∈ (0, 1) and different values of̃d. The horizontal investment function corresponds tod̃ = 0, i.e. to
the fundamentalist behavior. The fundamentalist function has one equilibrium, denoted byF . From
the picture it is obvious that varying the value ofd̃, the amount of wealth invested in the risky asset,
the horizontal investment function always has (apart the forbidden valuex = 1) a unique equilibrium
(cf. Chiarella and He (2001), first item of Proposition 3.1).

Now consider values of̃d below zero, associated with contrarian behavior. The equilibrium
in the right branch of the EML, denoted byC1, moves toward the lower values ofx∗ andr∗. At
the same time, a second equilibrium, denoted byC2, appears as the intersection of the investment
function with the left branch of the EML. This second equilibrium is characterized by a low value
of the price returnr∗ < −ē. Notice that it belongs to the feasible part of the left branch (i.e. leads
to positive equilibrium prices) only if̃d is small enough. It follows that the contrarian investment
function always possesses two equilibria, but one of them may be unfeasible (cf. Chiarella and He
(2001), second item of Proposition 3.1).

Finally, for d̃ > 0, the agent is a trend-follower. For low enough values ofd̃, his/her investment
function possesses two intersections, denoted byT1 andT2, with the right branch of the EML. With
the increase of the value of̃d, the equilibrium return associated with the first intersection increases
while the one associated with the second intersection decreases until they coincide and then disap-
pear, in the point where the investment function is tangent to the EML. If one considers relatively
high values of the parameterδ̃ and of the slopẽd, the trend follower function can also possess one
or two intersections with the left branch of the EML. Thus, the trend-followers investment function
possesses0, 1 or 2 equilibria (cf. Chiarella and He (2001), third item of Proposition 3.1).

Concerning equilibria stability, from Proposition 3.4 we immediately see that the equilibrium
F of the fundamentalist is always stable, while the equilibriumT2 of the trend-followers is always
unstable, because it violates the second inequality in (3.7). The other types of equilibria (likeT1, C1

andC2 in the left panel of Fig. 3) become stable with a high enough value ofλ.
Let us now consider a model with heterogeneous agents. We confine our illustration to the

case of several fundamentalists. The extension to other scenarios is straightforward. In the right
panel of Fig. 3 we draw three fundamentalist investment functions with different values of the risk
premia δ̃. There are three ”generic” equilibria:S1, S2 and S3. It follows from Proposition 4.2
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that only one of them is stable, namelyS1. This is the only equilibrium in which the survivor is
the most aggressive trader. Thus, among different fundamentalists, it is the one with the highest risk
premium who survives (cf. Chiarella and He (2001), Corollary 4.3). Sinceδ̃ is inversely proportional
to the risk aversion parameterγ one can say that among the fundamentalists with different risk
aversion coefficients the one with the smallest coefficient,ceteris paribus, survives and dominates
the economy. This is not a peculiar feature of the fundamentalist investment function, however.
In general terms, one can describe the effect of an increase (decrease) in the agent’s risk aversion
as a downward (upward) shift of his/her investment function. The shift implies that a different
quantity (lower or higher) of the risky asset is held in the agent’s portfolio for the same level of
expected price return. Because of (4.12) or (4.14) the shift of one investment function can have
a strong destabilizing effect on the equilibria of the other functions, and possibly disrupt already
established dominant positions. The ensuing out-of-equilibrium dynamics can eventually drive the
market towards a new equilibrium in which the agent who increased his/her risk aversion dominates
the economy. This general property seems to be in remarkable agreement with the following result
suggested by a simulation model in Zschischang and Lux (2001) (p.568, 569):

Looking more systematically at the interplay of risk aversion and memory span, it seems
to us that the former is the more relevant factor, as with different [risk aversion coeffi-
cients] we frequently found a reversal in the dominance pattern: groups which were
fading away before became dominant when we reduced their degree of risk aversion...

...It also appears that when adding different degrees of risk aversion, the differences of
time horizons are not decisive any more, provided the time horizon is not too short.

In the model by Zschischang and Lux the CRRA-agents have limited memory spans (time hori-
zons) and forecast the next return as the average of past realized returns. Since different lengths of
the memory spans can be approximated by different values ofλ, the result described in the above
quotation is exactly what we would expect according to our Proposition 4.2. Sufficiently long time
horizons are needed in order to satisfy condition (4.11). Then, the survivor is determined solely by
the conditions in (4.12) which hold for the agent with the highest risk aversion.

The above discussion seems to suggest that the market tends to prefer “higher” investment func-
tions. In the proposed multi-agent example the economy always ends up in the equilibrium with the
highest possible return. That is, the dynamics endogenously select the best aggregate outcome. As
we will discuss below, this is not always the case.

5.2 On the competition among strategies

The stability analysis performed in Section 4.3 provides important information about the asymptotic
conditions and the relative performances of the different traders interacting in the market. Inspired
by the famous Friedman hypothesis one could expect that if there is an agent who makes better use
of the information revealed by the trading activity and of the common and perfect knowledge about
the fundamental process, this more “rational” trader will outperform the others and ultimately drive
them out of the market. How and to what degree does this hypothetical result prove to be valid
within our framework? A different but related question is whether and to what extent the “dynamic”
selection mechanism, which leads one type of agents to survive and possibly dominate the market,
is beneficial to the economy as a whole, thus generating a higher growth rate of the total wealth.

Let us consider a stable many agents equilibrium with price returnr∗. According to the results of
the stability analysis, the wealth return of all survivors is equal tor∗, so thatr∗ is also the asymptotic
growth rate of the total wealth. At the same time, the wealth growth rates of the non surviving agents
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Figure 4: Left panel: A non-linear investment function leading to multiple equilibria.SH and SL are
stable whileU is unstable.Right panel: The same non-linear investment function together with a constant
investment function.SH andSM are stable whileSL andU are unstable.

are lower thanr∗. Then, if they were surviving, and consequently were affecting the dynamics of
the total wealth, the whole economy would grow at a lower rate. To put the same statement in
negative terms, the economy will never end up in an equilibrium where its growth rate is lower
than it would be if the survivor(s) were substituted by some other agent(s). One could see in this
result anoptimal selection principlesince it suggests that the market endogenously selects the best
aggregate outcome. This result is in line with the intuitive idea that in a model with endogenous
wealth dynamics, the agent who invests more in the growing asset increases his/her influence and,
eventually, dominates those traders who invest less. Our analysis confirms in part this intuition, but
also highlights two important limitations. First, the optimal selection principle does not apply to
the whole set of equilibria, but only to the subset formed by the equilibria associated with stable
fixed points in the single agent case. For instance, with the investment functions shown in the
right panel of Fig. 2, the market will never end up inU1, even if this is the equilibrium with the
highest possible return, since this equilibrium would not be stable if the survivor were present alone
in the market. Second, the possibility of havingmultiple stable equilibria, even with one single
trader, implies that the optimal selection principle has only a local character: the economy does
not necessarily converge to the stable equilibrium with the highest possible return. Consider, for
instance, the nonlinear investment function shown in the left panel of Fig. 4. This function possesses
two stable equilibria:SL andSH . The ultimate equilibrium selected by the dynamics when this is
the only function in the market will depend on the initial conditions; there are no guarantees that the
market will end up inSH , the equilibrium associated with the higher growth rate of the aggregate
wealth.

The implication of this result for the stochastic dynamical system can be seen from the left panel
of Fig. 5 where we show the price trajectories for different values of the initial returnr0 and the yield
standard deviationσe. If σe is relatively small, the system does not leave the basin of attraction of
one equilibrium. For instance, it converges toSH for r0 = 0.001 and toSU for r0 = 0. Conversely, if
the standard deviation is relatively high, the dynamics is jumping between two basins of attraction,
so that periods with high return are followed by periods with low return and vice versa.

The existence of multiple equilibria is also related to a second important implication of our
analysis: the fact that the dominance of one investment function over another is a “local” property
and depends on the initial market conditions. Consider a simple case with two heterogeneous traders.
Suppose that their investment functions are the ones depicted in the right panel of Fig. 4 so that
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Figure 5:Numerical simulations of the stochastic dynamical system (4.1). The investment functions depicted
in Fig. 4 are considered. The yield is log-normally distributed with meanē = 0.02. Left panel: Noise-driven
switching between basins of attraction of two different equilibria. Three price trajectories are shown in log-
scale for the case of single agent withS-shaped investment function and for different initial returnsr0 and
standard deviationsσe. Right panel: Dynamics of the relative wealth shareϕt,1 of this trader after the entry
of the second trader at timet = 100 with initial wealth shareϕ100,2 = 0.05, for different value of the standard
deviationsσe.

two stable equilibria exist:SM andSH . In the former equilibrium the agent with the horizontal
investment function dominates, while in the latter equilibrium this agent is dominated by the other
agent. Now assume that these two agents enter the market sequentially. It is immediate to see that it
is the orderin which these two agents enter the market that determines the final aggregate outcome
and decides the ultimate survivor.

An example is provided in the right panel of Fig. 5. We initialize the system with a single agent
to be at equilibriumSH (see Fig. 4). Then we let the second agent (with linear investment function)
enter the market and we show the post-entry dynamics of the wealth share of the incumbent. For
small value ofσe, the entrant is dominated, and, after a relatively short transient, the wealth share
of the incumbent returns to1. Conversely, if the yield volatility is higher, the second agent, after
a relative long transient, asymptotically dominates the market. Notice that when the value ofσe

is further increased, the system displays the abovementioned phenomenon of switching between
neighborhoods of different equilibria. Nevertheless, it spends more time in the basin of attraction of
SM , so that the first agent is ultimately driven out.

The phenomenon of the displacement of an already dominant strategy by the entry of a new
trader is not limited to some peculiar function, rather it is a general property of the model. Indeed,
for any given investment function it is always possible to build a second function which makes the
equilibria of the first unstable and breaks its possible dominance over the market. For instance, it
would be misleading to conclude that the agent who invests the largest share of wealth in the risky
security, possesses, due to the endogenous determination of prices, some “permanent” advantage
in the speculative struggle. Consider a constant investment function with investment sharex =
1 − ε, 0 < ε ¿ 1. Even if it possesses a stable equilibrium with very high returnr∗ ∼ 1/ε, it
can be destabilized by a second investment function with constant investment share greater than one.
Notice, however, that this second function does not become the winner: indeed, the equilibrium
created by this function is unstable in the presence of the first. Rather, the presence of both functions
in the market is likely to generate big fluctuations in returns and high volatility.

The impossibility of defining the best or even a ”good” investment function independently of the
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set of investment functions present in the market recalls several results in evolutionary finance (see
e.g. Hens and Schenk-Hoppé (2005)) and is in tune with the discussion about thelimits to arbitrage
found in the behavioral finance literature (see e.g. Barberis and Thaler (2003)). It also answers, in
negative terms, the question posed at the beginning of this Section about Friedman’s hypothesis: any
”rational” investment function, for instance derived from a utility maximization procedure, can be
destabilized by some ”irrational” function, like the one characterized by a constant investment share.

Our results extend to an endogenous price setting the conclusions in DeLong et al. (1990, 1991),
obtained in simple models with exogenous price dynamics, that rational traders are unable to com-
pletely drive the noise investors out of the market. Intuition suggests that in an endogenous price
formation setting, when the wealth of the agent feeds back into the model and affects the determi-
nation of future price returns, the survival probability of non optimal traders should be increased.
We provide a formal basis for this intuitive idea. Indeed, we prove that, inside our endogenous
setting, the relative importance of successful (irrational) trading is so high that not only may the
rational trader fail to dominate the irrational competitors, but could instead be eventually dominated
by them.

6 Conclusion

This paper extends previous contributions and presents novel results concerning the characterization
and the stability of equilibria in speculative pure exchange economies with heterogeneous adaptive
traders. While we mainly focus on theoretical aspects, our results also provide some rigorous back-
ground to the growing literature on numerical simulations of artificial agent-based financial markets.
Let us briefly review the assumptions we have made and the results we have obtained in order to
sketch possible future lines of research.

We considered a simple analytical framework using a minimal number of assumptions (2 assets
and Walrasian price formation). We modeled agents as speculative traders with individual demand
functions proportional to their wealth (CRRA framework). We constrained the agent’s portfolio
choice to be a function of the past market history, expressed through EWMA estimators of average
return and variance. Under a prescribed but arbitrary specification concerning the agents’ investment
choices we obtained the multi-dimensional dynamical system which describes the feasible dynamics
of the economy, i.e. the dynamics for which prices stay always positive. Within this framework, we
analyzed the market populated by an arbitrarily large number of heterogeneous agents. Using the
Equilibrium Market Line, we found the possible market equilibria, discussed their local stability
conditions and the bifurcation types generated by the violation of these conditions. The stability
analysis reveals that, even if the existence of multiple stable equilibria implies a local nature for
the market selection process and, ultimately, the impossibility of defining any global dominance
order relation among agents, in the neighborhood of each equilibrium the market displays a “quasi-
optimal” behavior leading to the dominance of those investment functions that guarantee a higher
growth rate for the whole economy.

However, it should be pointed out that our findings possess different degrees of generality. For
instance, the increase in the “memory” of the agent, i.e. the length of the past market history effec-
tively taken into consideration, leads to the stabilization of any single agent equilibrium. This result
is possibly related to the particular choice of estimators. Indeed, an analogous property has been
found in Bottazzi (2002) within a CARA framework when EWMA estimators were used. The scope
and strength of this effect are likely to change when different estimators are used. On the other hand,
the fact that the agent’s evaluation of endogenous risk does not affect the location and the stability of
equilibria is probably a quite robust feature. Indeed, at equilibrium the price return is constant and,
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therefore, any consistent estimator of the variance (or any other central moment) of the conditional
return distribution has to converge to zero.

Concerning the existence of three types of equilibria (generic with single survivor, non-generic
with many survivors and “no-arbitrage” with many survivors), we can say that preliminary results
obtained from the analysis of more general cases (Anufriev and Bottazzi, 2005) confirm the present
findings. Nonetheless, in our general framework, numerous specifications of the traders’ strategies
are possible in addition to the ones already considered. They encompass the inclusion of some form
of evaluation of the “fundamental” value of the asset, possibly obtained from a private source of
information, of processes of adaptation or co-evolution affecting agents’ investment functions, or
of strategic behaviors that try to take into consideration the reaction of other market participants to
revealed individual choices. Once these more sophisticated behaviors are implemented, the simple
picture obtained above is likely to change. In which direction, whether towards a more stable market
behavior with a more “optimal” character, or towards a increasingly unstable and volatile dynamics,
it is, at this point, hard to say.

APPENDIX: Proofs of Propositions and Lemmas

A Proof of Proposition 2.1
Plugging the expression forwt,n from (2.6) into the right-hand side of (2.5), assumingpt−1 > 0 and, consistent with
(2.12),pt−1 6=

∑
xt,n xt−1,n wt−1,n one gets

pt =

(
1− 1

pt−1

N∑
n=1

xt,n xt−1,n wt−1,n

)−1 (
N∑

n=1

xt,n wt−1,n +
(
et − 1

) N∑
n=1

xt,n wt−1,n xt−1,n

)
=

= pt−1

∑
n xt,n wt−1,n + (et − 1)

∑
n xt,n wt−1,n xt−1,n∑

n xt−1,n wt−1,n −
∑

n xt,n xt−1,n wt−1,n

where we have used (2.5) rewritten for timet − 1 to get the second equality. Condition (2.12) is obtained imposing
pt > 0, and the dynamics of the price return in (2.13) is immediately derived. From (2.6) rewritten for timet + 1 it
follows that

wt+1,n = wt,n

(
1 + xt,n (rt+1 + et+1)

) ∀n ∈ {1, . . . , N} , (A.1)

which leads to (2.14). To obtain the wealth share dynamics, divide both sides of (A.1) bywt+1 to have

ϕt+1,n =
wt,n

(
1 + xt,n (rt+1 + et+1)

)
∑

m wt+1,m
=

wt,n

(
1 + xt,n (rt+1 + et+1)

)
∑

m wt,m + (rt+1 + et+1)
∑

m xt,mwt,m
=

=
ϕt,n

(
1 + xt,n (rt+1 + et+1)

)

1 + (rt+1 + et+1)
∑

m xt,mϕt,m
,

where (A.1) has been used to get the second equality and we divided both numerator and denominator by the total wealth
at timet to get the third equality.

B Proof of Proposition 2.2
If (2.16) is valid for anyx it is also valid for their wealth-weighted average. Therefore one has

xmin ≤ 〈
xt

〉 ≤ xmax ,

x2
min ≤ 〈

xt xt+1

〉 ≤ x2
max ,

xmin (1− xmax) ≤ 〈
xt (1− xt+1)

〉 ≤ xmax(1− xmin) .
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Sinceet+1 > 0 both factors in the left-hand side of (2.12) are positive and, therefore, this constraint is satisfied. At the
same time, since the denominator of the expression in (2.13) is strictly greater than zero and the numerator is bounded,
price returnrt is bounded over time. Then, from (2.14) it follows that also agents’ wealth returnsρt,n are uniformly
bounded overn andt.

C Proof of Proposition 3.1
Item (i) is obvious after direct substitution of the equilibrium values into system (3.2). Item(ii) is equivalent to (2.12)
rewritten at the equilibrium. Item(iii) follows from (2.14) and (3.3):

ρ∗ = x∗ (r∗ + ē) = l(r∗) (r∗ + ē) = r∗ .

D Proof of Proposition 3.2
The Jacobian matrixJ of the system at a fixed point reads

J =

∥∥∥∥∥
0 f ′

−(1− λ)/(x∗ (1− x∗)) λ + (1− λ) (1 + r∗) f ′/(x∗ (1− x∗))

∥∥∥∥∥ ,

and has the following characteristic polynomial

µ2 − µ

(
λ + (1− λ) f ′

1 + r∗

x∗(1− x∗)

)
+ (1− λ) f ′

1
x∗(1− x∗)

. (D.1)

It is well-known that both roots of this polynomial are inside the unit circle if the following three conditions are satisfied:
d < 1, t < 1 + d andt > −1− d, where

t = λ + (1− λ) f ′
1 + r∗

x∗(1− x∗)
and d = (1− λ) f ′

1
x∗(1− x∗)

.

The three inequalities (3.4) can now be obtained by direct substitution and taking into account thatl′(r∗) = (x∗(1 −
x∗))/r∗.

E Proof of Proposition 3.4
The Jacobian matrix of the system at a fixed point reads

∥∥∥∥∥∥∥

0 f ′y f ′z
−(1− λ)/(x∗ (1− x∗)) λ + (1− λ) (1 + y∗) f ′y/(x∗ (1− x∗)) (1− λ) (1 + y∗) f ′z/(x∗ (1− x∗))

0 0 λ

∥∥∥∥∥∥∥
,

wheref ′z is the derivative off with respect to the second variable computed at the equilibrium. One of the eigenvalues
is λ < 1, while the others are the roots of polynomial (D.1) withf ′ replaced byf ′y. The statement immediately follows.

F Proof of Proposition 4.1
Sinceλn 6= 1 for all n, the first set of equalities in (4.5) follows immediately from blockY. Then, the second part of
(4.5) is also obvious from the equations in blockZ. Plugging the resulting relations into the equations of blockX one
has the third part of (4.5). Finally, relation (4.3) in equilibrium reads:

r∗ = ē

∑N−1
n=1 ϕ∗n x∗n

2 +
(
1−∑N−1

n=1 ϕ∗n
)
x∗N

2

∑N−1
n=1 ϕ∗n x∗n (1− x∗n) +

(
1−∑N−1

n=1 ϕ∗n
)
x∗N (1− x∗N )

. (F.1)

Let us consider, first, the case whenr∗ + ē 6= 0 and derive the equilibria described in the first two items of the
Proposition. From blockW using (4.2) one obtains

ϕ∗n = 0 or
∑N−1

m=1
ϕ∗m x∗m +

(
1−

∑N−1

m=1
ϕ∗m

)
x∗N = x∗n ∀n ∈ {1, . . . , N − 1} . (F.2)
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The set of equations (F.1) and (F.2) admits two types of solution, depending on how many equilibrium wealth shares are
different from zero: either one or many.

To derive the first type of solution assume (4.6). In this case (F.2) is, obviously, automatically satisfied for all agents.
From (F.1) one hasx∗1 = r∗/(ē + r∗) which together with the third part of (4.5) leads to (4.7).

To derive the second type of solution assume (4.8). In this case, the second equality of (F.2) must be satisfied for any
n ≤ k. Since its left-hand side does not depend onn, ax∗1¦k must exist such thatx∗1 = · · · = x∗k = x∗1¦k. Substituting
x∗n = 0 for n > k andx∗n = x∗1¦k for n ≤ k in (F.1) one getsx∗1¦k = r∗/(ē + r∗). Combining this last relation with the
third part of (4.5) forn ≤ k we get (4.9).

Considering, finally, the case whenr∗ + ē = 0, we straight-forwardly derive the equilibria from the third item of
the Proposition. Indeed, equations from blockW are automatically satisfied, while (4.10) follows from (F.1).

The equilibrium wealth growth rate of the survivors is immediately obtained from the derived results and (2.14).

G Proofs of Propositions in Section 4.3
Before proving Propositions 4.2, 4.3 and 4.4 we need some preliminary results. The Jacobian matrix of the deterministic
skeleton of system (4.1) is a

(
4N − 1

)× (
4N − 1

)
matrix. Using the block structure introduced in Section 4.1 it can be

separated into16 blocks

J =

∥∥∥∥∥∥∥∥∥∥∥

∂X
∂X

∂X
∂Y

∂X
∂Z

∂X
∂W

∂Y
∂X

∂Y
∂Y

∂Y
∂Z

∂Y
∂W

∂Z
∂X

∂Z
∂Y

∂Z
∂Z

∂Z
∂W

∂W
∂X

∂W
∂Y

∂W
∂Z

∂W
∂W

∥∥∥∥∥∥∥∥∥∥∥

. (G.1)

The block∂X/∂X is anN ×N matrix containing the partial derivatives of the agents’ present investment choices
with respect to the agents’ past investment choices. According to (2.8) the investment choice of any agent does not
explicitly depend on the investment choices in the previous period, therefore,

[
∂X
∂X

]

n,m

=
∂fn

∂xm
= 0 , 1 ≤ n,m ≤ N ,

and this block is a zero matrix.
The block∂X/∂Y is anN × N matrix containing the partial derivatives of the agents’ investment choices with

respect to the agents’ return forecasts. Since the choice of any agent does not depend on the forecasts of other agents,
this block is a diagonal matrix with diagonal elements

[
∂X
∂Y

]

n,n

=
∂fn

∂yn
= f ′n,y , 1 ≤ n ≤ N .

Analogously theN × N block ∂X/∂Z of the partial derivatives of the agents’ investment choices with respect to
the agents’ variance forecasts is a diagonal matrix with diagonal elements

[
∂X
∂Z

]

n,n

=
∂fn

∂zn
= f ′n,z , 1 ≤ n ≤ N .

The block∂X/∂W is anN × (N − 1) matrix containing the partial derivatives of the agents’ investment choices
with respect to the agents’ investment shares. Under Assumption 2 this is a zero matrix

[
∂X
∂W

]

n,m

=
∂fn

∂ϕm
= 0 , 1 ≤ n ≤ N, 1 ≤ m ≤ N − 1 .

The definitions of the next blocks will make use of the function on the right-hand side of (4.3) which gives the
evolution of the return. This function depends on the agents’ previous investment choicesxt,n, the agents’ wealth shares
ϕt,n and the agents’ contemporaneous investment choices given by the investment functionsfn for n ∈ {1, . . . , N}. We
denote the corresponding derivatives asr′xn

, r′ϕn
andr′fn

.
The block∂Y/∂X is anN ×N matrix containing the partial derivatives of the agents’ return forecasts with respect

to the agents’ investment shares. The elements of this block read:
[

∂Y
∂X

]

n,m

=
∂yn

∂xm
= (1− λn) r′xm

, 1 ≤ n,m ≤ N .
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The block∂Y/∂Y is anN ×N matrix containing the partial derivatives of the agents’ return forecasts with respect
to the same set of variables. Using the chain rule one can easily check that this block contains the following elements:

[
∂Y
∂Y

]

n,m

=
∂yn

∂ym
= λn δn,m + (1− λn) r′fm

f ′m,y , 1 ≤ n,m ≤ N ,

whereδn,m stands for the Kronecker delta.
The block∂Y/∂Z is anN ×N matrix containing the partial derivatives of the agents’ return forecasts with respect

to the agents’ forecasts for variance. Using the chain rule we find that the elements of this block read:
[

∂Y
∂Z

]

n,m

=
∂yn

∂zm
= (1− λn) r′fm

f ′m,z , 1 ≤ n, m ≤ N .

The block∂Y/∂W is anN × (N − 1) matrix containing the partial derivatives of the agents’ return forecasts with
respect to the agents’ wealth shares. The elements of this block are:

[
∂Y
∂W

]

n,m

=
∂yn

∂ϕm
= (1− λn) r′ϕm

, 1 ≤ n ≤ N, 1 ≤ m ≤ N − 1 .

The block∂Z/∂X is anN × N matrix containing the partial derivatives of the agents’ variance forecasts with
respect to the agents’ investment shares. In any equilibrium this block is a zero matrix:

[
∂Z
∂X

]

n,m

=
∂zn

∂xm
= 0 , 1 ≤ n,m ≤ N .

Indeed, the derivative∂zn/∂xm contains the factorrt+1 − yt,n, which reduces to zero in any equilibrium due to (4.5).
Analogously, the block∂Z/∂Y which is anN ×N matrix containing the partial derivatives of the agents’ variance

forecasts with respect to the agents’ return forecasts, is a zero block in equilibrium:
[
∂Z
∂Y

]

n,m

=
∂zn

∂ym
= 0 , 1 ≤ n,m ≤ N .

The same reasoning allows us to simplify theN ×N block∂Z/∂Z containing the partial derivatives of the agents’
variance forecasts with respect to themselves. In equilibrium this is a diagonal matrix with diagonal elements

[
∂Z
∂Z

]

n,n

=
∂zn

∂zn
= λn , 1 ≤ n ≤ N .

The block∂Z/∂W is anN × (N − 1) matrix containing the partial derivatives of the agents’ variance forecasts
with respect to the agents’ wealth shares. Again, in any equilibrium this is a zero block:

[
∂Z
∂W

]

n,m

=
∂zn

∂ϕm
= 0 , 1 ≤ n ≤ N, 1 ≤ m ≤ N − 1 .

The block∂W/∂X is an(N − 1) × N matrix containing the partial derivatives of the agents’ wealth shares with
respect to the agents’ investment shares. It is:

[
∂W
∂X

]

n,m

=
∂ϕn

∂xm
= Φxm

n + Φr
n · r′xm

, 1 ≤ n ≤ N − 1 , 1 ≤ m ≤ N ,

whereΦxm
n = ∂Φn/∂xm andΦr

n = ∂Φn/∂r.
The block∂W/∂Y is an(N − 1) × N matrix containing the partial derivatives of the agents’ wealth shares with

respect to the agents’ return forecast. It is
[
∂W
∂Y

]

n,m

=
∂ϕn

∂ym
= Φr

n · r′fm
· f ′m,y , 1 ≤ n ≤ N − 1 , 1 ≤ m ≤ N .

The block∂W/∂Z is an(N − 1) × N matrix containing the partial derivatives of the agents’ wealth shares with
respect to the agents’ variance forecasts. It is

[
∂W
∂Z

]

n,m

=
∂ϕn

∂zm
= Φr

n · r′fm
· f ′m,z , 1 ≤ n ≤ N − 1 , 1 ≤ m ≤ N .
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The block∂W/∂W is an(N − 1)× (N − 1) matrix containing the partial derivatives of the agents’ wealth shares
with respect to the agents’ wealth shares. The elements of this block are:

[
∂W
∂W

]

n,m

=
∂ϕn

∂ϕm
= Φϕm

n + Φr
n · rϕm , 1 ≤ n,m ≤ N − 1 ,

whereΦϕm
n = ∂Φn/∂ϕm.

With the previous definitions one obtains the following

Lemma G.1. Letx∗ be an equilibrium of the system(4.1)with k ≥ 1 survivors. The Jacobian matrix computed at this
point, J(x∗), has the structure of the following matrix, where each one of the16 blocks defined above is divided into
4 sub-blocks to display the upper-leftk × k minor matrix. All the elements which are different from zero in all types of
equilibria are denoted by the same symbol “F”, while for those elements which are non-zero only in the no-arbitrage
equilibria we use symbol “¥”.
∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

0 . . . 0 0 . . . 0 F . . . 0 0 . . . 0 F . . . 0 0 . . . 0 0 . . . 0 0 . . . 0
...

.. .
...

...
. . .

...
...

. ..
...

...
. . .

...
...

. . .
...

...
.. .

...
...

. ..
...

...
. . .

...
0 . . . 0 0 . . . 0 0 . . . F 0 . . . 0 0 . . . F 0 . . . 0 0 . . . 0 0 . . . 0
0 . . . 0 0 . . . 0 0 . . . 0 F . . . 0 0 . . . 0 F . . . 0 0 . . . 0 0 . . . 0
...

.. .
...

...
. . .

...
...

. ..
...

...
. . .

...
...

. . .
...

...
.. .

...
...

. ..
...

...
. . .

...
0 . . . 0 0 . . . 0 0 . . . 0 0 . . . F 0 . . . 0 0 . . . F 0 . . . 0 0 . . . 0
F . . . F 0 . . . 0 F . . . F 0 . . . 0 F . . . F 0 . . . 0 F . . . F F . . . F
...

.. .
...

...
. . .

...
...

. ..
...

...
. . .

...
...

. . .
...

...
.. .

...
...

. ..
...

...
. . .

...
F . . . F 0 . . . 0 F . . . F 0 . . . 0 F . . . F 0 . . . 0 F . . . F F . . . F
F . . . F 0 . . . 0 F . . . F F . . . 0 F . . . F 0 . . . 0 F . . . F F . . . F
...

.. .
...

...
. . .

...
...

. ..
...

...
. . .

...
...

. . .
...

...
.. .

...
...

. ..
...

...
. . .

...
F . . . F 0 . . . 0 F . . . F 0 . . . F F . . . F 0 . . . 0 F . . . F F . . . F
0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 F . . . 0 0 . . . 0 0 . . . 0 0 . . . 0
...

.. .
...

...
. . .

...
...

. ..
...

...
. . .

...
...

. . .
...

...
.. .

...
...

. ..
...

...
. . .

...
0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . F 0 . . . 0 0 . . . 0 0 . . . 0
0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 F . . . 0 0 . . . 0 0 . . . 0
...

.. .
...

...
. . .

...
...

. ..
...

...
. . .

...
...

. . .
...

...
.. .

...
...

. ..
...

...
. . .

...
0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . F 0 . . . 0 0 . . . 0
F . . . F 0 . . . 0 ¥ . . . ¥ 0 . . . 0 ¥ . . . ¥ 0 . . . 0 F . . . F F . . . F
...

.. .
...

...
. . .

...
...

. ..
...

...
. . .

...
...

. . .
...

...
.. .

...
...

. ..
...

...
. . .

...
F . . . F 0 . . . 0 ¥ . . . ¥ 0 . . . 0 ¥ . . . ¥ 0 . . . 0 F . . . F F . . . F
0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 F . . . 0
...

.. .
...

...
. . .

...
...

. ..
...

...
. . .

...
...

. . .
...

...
.. .

...
...

. ..
...

...
. . .

...
0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . F

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

Proof. Let us consider, first, those equilibria wherer∗ 6= −ē. For alln, l ∈ {1, . . . , N − 1} andm ∈ {1, . . . , N} one
has

Φr
n = ϕ∗n

x∗n − x∗1¦k
1 + r∗

= 0 , Φxm
n = ϕ∗n

(
δn,m − ϕ∗m

) ē + r∗

1 + r∗
,

Φϕl
n =

δn,l

(
1 + x∗n(r∗ + ē)

)− ϕ∗n(r∗ + ē)(x∗l − x∗N )
1 + r∗

.

(G.2)

Therefore, blocks[∂W/∂Y] and[∂W/∂Z] are zero matrices, while the following blocks can be simplified:
[
∂W
∂X

]

n,m

=

{
Φxm

n m, n ≤ k

0 otherwise
and

[
∂W
∂W

]

n,m

=

{
0 n > k , n 6= m

Φϕm
n otherwise

.

Furthermore, form ∈ {1, . . . , N} it is

r′xm
= −ϕ∗m

1
x∗1¦k (1− x∗1¦k)

, r′fm
= ϕ∗m

1 + r∗

x∗1¦k (1− x∗1¦k)
. (G.3)
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Thusr′xm
= r′fm

= 0 for m > k, and the structure above (with zeros instead of¥) immediately follows. Moreover,

r′ϕm
=

r∗ + ē

x∗1¦k (1− x∗1¦k)
(
x∗m (x∗m − x∗1¦k)− x∗N (x∗N − x∗1¦k)

)
, ∀m ∈ {1, . . . , N − 1} . (G.4)

Second, we consider no-arbitrage equilibria. Forn, l ∈ {1, . . . , N − 1} andm ∈ {1, . . . , N} one has

Φxm
n = 0 , Φϕl

n = δn,l , Φr
n = ϕ∗n x∗n ,

r′xm
= ϕ∗m

1− ē〈
x2

〉 , r′fm
= −ϕ∗m

1〈
x2

〉 , r′ϕn
= −ē

x∗n − x∗N〈
x2

〉 .
(G.5)

Therefore,
[
∂W
∂X

]

n,m

=

{
Φr

n r′xm
m,n ≤ k

0 otherwise
,

[
∂W
∂Y

]

n,m

=

{
Φr

n r′fm
f ′m,y m,n ≤ k

0 otherwise

[
∂W
∂Z

]

n,m

=

{
Φr

n r′fm
f ′m,z m, n ≤ k

0 otherwise
,

[
∂W
∂W

]

n,m

=

{
δn,m + Φr

n r′ϕm
n ≤ k

δn,m otherwise

.

Lemma G.2. Consider equilibriumx∗ with r∗ 6= −ē. The characteristic polynomialPJ of the matrixJ(x∗) reads

PJ(µ) = (−1)N µN−1 (1− µ)k−1
N∏

j=k+1

(
1 + x∗j (r∗ + ē)

1 + r∗
− µ

) k∏

j=1

(λj − µ)
N∏

j=k+1

(λj − µ)2


µ

k∏

j=1

(λj − µ) +
(1 + r∗)µ− 1
x∗1¦k(1− x∗1¦k)

k∑

j=1

(
ϕ∗j f ′j,y(1− λj)

k∏

i=1,i6=j

(λi − µ)
)

 (G.6)

Proof. The following proof is constructive: we will identify in succession the factors appearing in (G.6). At each step, a
set of eigenvalues is found and the problem is reduced to the analysis of the residual matrix obtained removing the rows
and columns associated with the relative eigenspace.

Consider the Jacobian matrix in Lemma G.1. One can easily see that in each of theN rows belonging to the third
row of blocks (blocks are separated by single lines) the only non-zero entries are theλ’s on the diagonal of[∂Z/∂Z].
Consequently,λ1, . . . , λN are eigenvalues of the matrix, with multiplicity (at least) one. Also in each of the lastN−1−k
rows of the matrix, the only non-zero entries belong to the main diagonal of[∂W/∂W]. Thus, whenk < N − 1, we
have theN − 1− k eigenvaluesΦϕn

n for k + 1 ≤ n ≤ N − 1, computed in (G.2). It is also obvious that the lastN − k
columns of the leftmost block of column contain only zero entries so that the matrix possesses eigenvalue0 with (at
least) multiplicityN − k. A first contribution to the characteristic polynomial is, therefore, determined as

(−µ)N−k
N∏

j=1

(
λj − µ

) N−1∏

j=k+1

(
Φ

ϕj

j − µ
)

= (−µ)N−k
N∏

j=1

(
λj − µ

) N−1∏

j=k+1

(
1 + x∗j (r

∗ + ē)
1 + r∗

− µ

)
(G.7)

In order to find the remaining factors we eliminate the rows and columns associated with the previous eigenvalues.
Consider now the lastN − k columns in the second block of columns in the remaining matrix. The only non zero
elements are on the main diagonal of[∂Y/∂Y]. If k < N , this leads to a second contribution

N∏

j=k+1

(
λj − µ

)
. (G.8)

After the corresponding further elimination of rows and columns the following matrix is obtained
řřřřřřřřřřřřřřřřřřřřřřřřřřřřřřř

0 . . . 0 f ′1,y . . . 0 0 . . . 0

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
0 . . . 0 0 . . . f′k,y 0 . . . 0

(1− λ1)r′x1
. . . (1− λ1)r′xk

λ1 + (1− λ1)r′f1
f ′1,y . . . (1− λ1)r′fk

f ′k,y (1− λ1)r′ϕ1
. . . (1− λ1)r′ϕk

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
(1− λk)r′x1

. . . (1− λk)r′xk
(1− λk)r′f1

f ′1,y . . . λk + (1− λk)r′fk
f ′k,y (1− λk)r′ϕ1

. . . (1− λk)r′ϕk

Φ
x1
1 . . . Φ

xk
1 0 . . . 0 Φ

ϕ1
1 . . . Φ

ϕk
1

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
Φ

x1
k

. . . Φ
xk
k

0 . . . 0 Φ
ϕ1
k

. . . Φ
ϕk
k

řřřřřřřřřřřřřřřřřřřřřřřřřřřřřřř

(G.9)
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This matrix, which we callL, has dimension3k × 3k when k < N . If k = N , representation (G.9) is, strictly
speaking, not correct, since there are onlyN − 1 wealth sharesϕ’s. In this case, the correct matrix has dimension
(3N − 1) × (3N − 1) and can be obtained from (G.9) through elimination the last row and the last column. We will
compute now the characteristic polynomial, i.e. the determinantdet(L − µI), whereI denotes an identity matrix of
the corresponding dimension. We consider separately the following two cases: whenk < N and whenk = N .

If k < N , then from (G.2) it follows that forn,m ≤ k one has

Φϕm
n =

{
1− ϕ∗n v if n = m

−ϕ∗n v otherwise
, where v =

(
x∗1¦k − x∗N

) ē + r∗

1 + r∗
. (G.10)

Moreover, since all survivors invest sharex1¦k, it follows from (G.4) that form ≤ k

r′ϕm
= v b , where b = x∗N

1 + r∗

x∗1¦k (1− x∗1¦k)
. (G.11)

Therefore, the last block of columns in the matrixL− λI can be rewritten as
∥∥∥ v b + b1 | . . . | v b + bk

∥∥∥ ,

where we introduce the following column vectors

b =
∥∥∥ 0 . . . 0 (1− λ1) b . . . (1− λk) b −ϕ∗1 −ϕ∗2 . . . −ϕ∗k

∥∥∥ ,

b1 =
∥∥∥ 0 . . . 0 0 . . . 0 1− µ 0 . . . 0

∥∥∥ ,

...

bk =
∥∥∥ 0 . . . 0 0 . . . 0 0 0 . . . 1− µ

∥∥∥ .

Based on the above representation of the last block, we apply the multilinear property to the determinantdet(L− λI).
Thus, we consider each of the last columns as a sum of two terms and end up with a sum of2k determinants. Notice,
however, that many of them are zeros, since they contain two or more columns proportional to vectorb. There are only
k + 1 non-zero elements in the expansion. One of them has the following structure of the last block of columns:

∥∥∥ b1 | . . . . . . . . . | bk

∥∥∥ ,

while all the other non-zero terms have columnv b instead ofbν (for all ν ∈ {1, . . . , k}) on theν’th place of the last
block of columns:

∥∥∥ b1 | . . . | v b | . . . | bk

∥∥∥ .

The matrix with the former block contains a diagonal lower-right corner. Its determinant is equal to(1− µ)k detM ,
with

M =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

−µ . . . 0 f ′1,y . . . 0
...

.. .
...

...
. . .

...

0 . . . −µ 0 . . . f ′k,y

(1− λ1) r′x1
. . . (1− λ1) r′xk

λ1 − µ + (1− λ1) r′f1
f ′1,y . . . (1− λ1) r′fk

f ′k,y

...
.. .

...
...

. . .
...

(1− λk) r′x1
. . . (1− λk) r′xk

(1− λk) r′f1
f ′1,y . . . λk − µ + (1− λk) r′fk

f ′k,y

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

.

The remainingk determinants can be simplified in an analogous way, so that

det(L− λI) = (1− µ)k detM + (1− µ)k−1
k∑

ν=1

detMν , (G.12)
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where forν ∈ {1, . . . , k} we introduce the following matrix with constantsv andb defined in (G.10) and (G.11)

Mν =

řřřřřřřřřřřřřřřřřřřřřřřřřř

−µ . . . 0 f ′1,y . . . 0 0

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

.

.

.

0 . . . −µ 0 . . . f′k,y 0

(1− λ1) r′x1
. . . (1− λ1) r′xk

λ1 − µ + (1− λ1) r′f1
f ′1,y . . . (1− λ1) r′fk

f ′k,y (1− λ1) v b

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

.

.

.

(1− λk) r′x1
. . . (1− λk) r′xk

(1− λk) r′f1
f ′1,y . . . λk − µ + (1− λk) r′fk

f ′k,y (1− λk) v b

Φ
x1
ν . . . Φ

xk
ν 0 . . . 0 −v ϕ∗ν

řřřřřřřřřřřřřřřřřřřřřřřřřř

.

Our next step consists in the computation of the determinants of matricesM andMν . We will again exploit the
multilinear property of the determinant. To compute the first determinant we rewrite the matrix as follows

M =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

−µ . . . 0 f ′1,y . . . 0
...

.. .
...

...
. . .

...

0 . . . −µ 0 . . . f ′k,y

(1− λ1) c + c1

...
(1− λk) c + ck

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

, (G.13)

where the followingk + 1 row vectors were introduced

c =
∥∥∥ r′x1

. . . r′xk
r′f1

f ′1,y r′f2
f ′2,y . . . r′fk

f ′k,y

∥∥∥ ,

c1 =
∥∥∥ 0 . . . 0 λ1 − µ 0 . . . 0

∥∥∥ ,

...

ck =
∥∥∥ 0 . . . 0 0 0 . . . λk − µ

∥∥∥ ,

Applying the multilinear property to the lastk rows in the determinant in (G.13), we get a sum of2k determinants. Many
of them are zero, since they contain two or more rows proportional to the vectorc. One of the remaining determinants
belongs to the lower-diagonal matrix with vectors{c1, . . . , ck} in the lastk rows. All other non-zero determinants come
from k different matrices which can be obtained from this lower-diagonal matrix by substitution of one of the rows by
vectorc. All these determinants can be easily computed, so that we have the following

detM = (−µ)k
k∏

j=1

(λj − µ) +
k∑

j=1


(−µ)k−1 (1− λj) f ′j,y

(− µ r′fj
− r′xj

) k∏

i=1,i6=j

(λi − µ)


 . (G.14)

Analogously for allν ∈ {1, . . . , k} we get

detMν = (−v ϕ∗ν)(−µ)k
k∏

j=1

(λj − µ) +
k∑

j=1


(−µ)k−1 (1− λj) f ′j,y v · det Mν,j ·

k∏

i=1,i6=j

(λi − µ)


 ,

whereMν,j is the following3× 3 matrix

Mν,j =

∥∥∥∥∥∥∥

−µ 1 0

r′xj
r′fj

b

Φ
xj
ν 0 −ϕ∗ν

∥∥∥∥∥∥∥
with detMν,j = b Φxj

ν + ϕ∗ν
(
µ r′fj

+ r′xj

)
.
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Plugging the values of derivativesr′fj
andr′xj

computed in (G.3) into the corresponding expressions, we get the following

k∑
ν=1

detMν = −v (−µ)k
k∏

j=1

(λj − µ) + v

k∑

j=1


(−µ)k−1 (1− λj) f ′j,y

k∏

i=1,i6=j

(λi − µ) ·
k∑

ν=1

det Mν,j


 =

= −v (−µ)k
k∏

j=1

(λj − µ) + v

k∑

j=1


(−µ)k−1 (1− λj) f ′j,y

k∏

i=1,i6=j

(λi − µ) ·
(
µ r′fj

+ r′xj

)

 =

= −v det M ,

where to get the second equality we observe that
∑k

ν=1 Φ
xj
ν = 0, which can be easily verified from (G.2), while the last

equality follows from comparison with (G.14).
Now we are in the position to finish the computation of thedet(L− λI) started in (G.12). It reads

det(L− λI) = (1− µ− v) (1− µ)k−1 detM =
(

1 + x∗N (r∗ + ē)
1 + r∗

− µ

)
(1− µ)k−1 detM . (G.15)

If k = N , i.e. all agents survive, then all investment shares are the same. In this case, according to (G.2) and (G.4),
all elements in the last block of columns of matrix (G.9) are zeros apart from the ones on the diagonal in the lowest
(N − 1)× (N − 1) matrix. It contributes to the characteristic polynomial by the factor(1−µ)N−1. The remaining part
is the determinant of matrixM in this case. This is consistent with (G.15).

Bringing now together the contributions in (G.7), (G.8) and (G.15), and also computing determinant of matrixM
in (G.14) in equilibrium, we, finally, get the characteristic polynomial (G.6).

Lemma G.3. Consider no-arbitrage equilibriumx∗. The characteristic polynomialPJ of the matrixJ(x∗) reads

PJ(µ) = (−1)N−1 µN−1 (1− µ)N−2 (µ− 1 + ē)
k∏

j=1

(λj − µ)
N∏

j=k+1

(λj − µ)2


µ

k∏

j=1

(λj − µ) +
1− µ〈
x2

〉
k∑

j=1

(
ϕ∗j f ′j,y(1− λj)

k∏

i=1,i6=j

(λi − µ)
)

 (G.16)

Proof. Since the proof below is analogous to the proof of Lemma G.2, some details are omitted. In particular, we
confine analysis on the case whenk < N . From the Jacobian matrix in Lemma G.1 it follows that (i) in each of theN
rows belonging to the third row of blocks the only non-zero entries are theλ’s on the diagonal of[∂Z/∂Z], (ii) in each
of the lastN − 1− k rows of the matrix, the only non-zero entries belong to the main diagonal of[∂W/∂W] and equal
to 1, (iii) the lastN − k columns of the leftmost blocks contain only zero entries. Together, it gives the first entry in the
characteristic polynomial:

(−µ)N−k (1− µ)N−1−k
N∏

j=1

(
λj − µ

)
. (G.17)

Consider the lastN − k columns in the second block of columns of the matrix obtained after the corresponding elimina-
tion of the rows and columns. The only non zero elements are on the main diagonal of[∂Y/∂Y]. This leads to a second
contribution

N∏

j=k+1

(
λj − µ

)
. (G.18)
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After further elimination of rows and columns, the following matrix is obtained
řřřřřřřřřřřřřřřřřřřřřřřřřřřřřřř

0 . . . 0 f ′1,y . . . 0 0 . . . 0

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
0 . . . 0 0 . . . f′k,y 0 . . . 0

(1− λ1)r′x1
. . . (1− λ1)r′xk

λ1 + (1− λ1)r′f1
f ′1,y . . . (1− λ1)r′fk

f ′k,y (1− λ1)r′ϕ1
. . . (1− λ1)r′ϕk

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
(1− λk)r′x1

. . . (1− λk)r′xk
(1− λk)r′f1

f ′1,y . . . λk + (1− λk)r′fk
f ′k,y (1− λk)r′ϕ1

. . . (1− λk)r′ϕk

Φr
1r′x1

. . . Φr
1r′xk

Φr
1r′f1

f ′1,y . . . Φr
1r′fk

f ′k,y 1 + Φr
1r′ϕ1

. . . Φr
1r′ϕk

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
Φr

kr′x1
. . . Φr

kr′xk
Φr

kr′f1
f ′1,y . . . Φr

kr′fk
f ′k,y Φr

kr′ϕ1
. . . 1 + Φr

kr′ϕk

řřřřřřřřřřřřřřřřřřřřřřřřřřřřřřř

We denote this matrix asL and compute the remaining term in the characteristic polynomial of the original system as
det(L − µI), whereI is an identity3k × 3k matrix. Applying the multilinear property of the determinant to the last
block of columns we get

det(L− µI) = (1− µ)k det M + (1− µ)k−1 detNν , (G.19)

where matrixM was defined in (G.13) (recall, however that the partial derivativesr′xj
andr′fj

have now other values),
and for allν ∈ {1, . . . , k} we introduce matrix

Nν =

řřřřřřřřřřřřřřřřřřřřřřřřřřř

−µ . . . 0 f ′1,y . . . 0 0

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

.

.

.

0 . . . −µ 0 . . . f′k,y 0

(1− λ1) r′x1
. . . (1− λ1) r′xk

λ1 − µ + (1− λ1) r′f1
f ′1,y . . . (1− λ1) r′fk

f ′k,y (1− λ1) r′ϕν

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

.

.

.

(1− λk) r′x1
. . . (1− λk) r′xk

(1− λk) r′f1
f ′1,y . . . λk − µ + (1− λk) r′fk

f ′k,y (1− λk) r′ϕν

Φr
νr′x1

. . . Φr
νr′xk

Φr
νr′f1

f ′1,y . . . Φr
νr′fk

f ′k,y Φr
νr′ϕν

řřřřřřřřřřřřřřřřřřřřřřřřřřř

.

To compute the determinant of this matrix we again use the multilinear property, applying it to the row vectors in the
second block (among three horizontal blocks separated by the single lines). After some algebraic manipulation, one has

detNν = Φr
ν r′ϕν

(−µ)k
k∏

j=1

(λj − µ) .

Finally, substitution of the derivatives computed in (G.5) allows to complete the computation started in (G.19). One has

det(L−λI) = (1−µ)k−1 (−µ)k−1(µ−1+ ē)

(
µ

k∏

j=1

(λj −µ)+
1− µ〈
x2

〉
k∑

j=1

(
(1−λj) f ′j,y ϕ∗j

k∏

i=1,i6=j

(λi−µ)
))

Combining now (G.17), (G.18) and the last expression, we get polynomial (G.16).

Using the characteristic polynomial of the Jacobian matrix in the corresponding equilibrium, it is straightforward to
derive the equilibrium stability conditions of Section 4.3.

The case of one survivor: Proof of Proposition 4.2

If k = 1, characteristic polynomial (G.6) reduces to

(−1)N µN−1 (λ1−µ)
N∏

j=2

(λj−µ)2
(

µ(λ1 − µ) +
(1 + r∗)µ− 1

x∗1(1− x∗1)
· (1− λ1) · f ′1,y

) N∏

j=2

(
1 + x∗j (r∗ + ē)

1 + r∗
− µ

)
.

Sinceλj ∈ [0, 1) there are3N − 2 roots that are inside the unit circle irrespective of the model parameters. The
conditions in (4.12) are derived from the requirement

∣∣∣∣
1 + x∗j (r∗ + ē)

1 + r∗

∣∣∣∣ < 1 j ≥ 2 ,

which comes from the last factor. The three inequalities in (4.11) are obtained applying standard conditions for the roots
of the second degree polynomial in the first parentheses, which is analogous to (D.1). The Proposition 4.2 is proved.

36



The case of many survivors: Proof of Proposition 4.3 and Corollary 4.2

In the case ofk > 1 survivors the characteristic polynomial in (G.6) possesses a unit root with multiplicityk − 1.
Consequently, the fixed point is non-hyperbolic. To find the eigenspace associated with the eigenvalue1 we subtract
from the initial Jacobian matrix (G.1) computed at the equilibrium the identity matrix of the corresponding dimension
and analyze the kernel of the resulting matrixJ − I. This can be done through the analysis of the kernel of the matrix
obtained by the substitution of the identity matrix from matrixL given in (G.9). Let us consider thek < N and the
k = N cases separately.

Whenk < N , as we showed in the proof of Lemma G.2, in the resulting matrix the lastk− 1 columns are identical,
see (G.10) and (G.11). Therefore, the kernel of the matrixJ − I can be generated by a basis containing the following
k − 1 vectors

un =
(

0, . . . , 0︸ ︷︷ ︸
N

; 0, . . . , 0︸ ︷︷ ︸
N

; 0, . . . , 0︸ ︷︷ ︸
N

; 0, . . . , 0︸ ︷︷ ︸
n−1

, 1, 0, . . . , 0︸ ︷︷ ︸
k−n−1

,−1; 0, . . . , 0︸ ︷︷ ︸
N−1−k

)
, 1 ≤ n ≤ k − 1 . (G.20)

Notice that the direction of vectorun corresponds to a change in the relative wealths of then-th andk-th survivor.
If, instead,k = N , then the lastk − 1 columns in the resulting matrix are zero vectors, and then the kernel of the

matrixJ − I can be generated with theN − 1 vectors of the canonical basis

vn =
(

0, . . . , 0︸ ︷︷ ︸
N

; 0, . . . , 0︸ ︷︷ ︸
N

; 0, . . . , 0︸ ︷︷ ︸
N

; 0, . . . , 0︸ ︷︷ ︸
n−1

, 1, 0, . . . , 0︸ ︷︷ ︸
N−n−1

)
, 1 ≤ n ≤ N − 1 . (G.21)

whose direction corresponds to a change in the relative wealths of then-th andN -th survivors.
If the system is perturbed away from equilibriumx∗ along the directions defined in (G.20) or (G.21), a new fixed

point is reached. Then, the system is stable, but not asymptotically stable, with respect to these perturbations.
Moreover, since the eigenspaces identified above do not depend on the system parameters, it is immediate to realize

that they do constitute not only the tangent spaces to the corresponding non-hyperbolic manifolds, but the manifolds
themselves.

The polynomial (4.13) is the last factor in (G.6), while conditions (4.14) are obtained by imposing
∣∣∣∣
1 + x∗j (r∗ + ē)

1 + r∗

∣∣∣∣ < 1 j > k + 1 ,

which completes the proof of Proposition.
If all the survivors are characterized by the same parameterλ ∈ [0, 1), the last factor in (G.6) reduces to

(λ− µ)k−1


µ (λ− µ) + (1− λ)

(1 + r∗)µ− 1
x∗1¦k(1− x∗1¦k)

k∑

j=1

ϕ∗j f ′j,y




and the result of Corollary directly follows applying standard conditions to the second-degree polynomial in the paren-
thesis above.

The case of “no-arbitrage” equilibria: Proof of Proposition 4.4 and Corollary 4.3

Independently of the number of survivors, characteristic polynomial in (G.16) possesses a unit root with multiplicity
N − 2. Consequently, the fixed pointx∗ is never hyperbolic, whenN ≥ 3. It is easy to see that in this case all equilibria
belong to the manifold of dimensionN − 2 and that this is exactly a non-hyperbolic manifold ofx∗. For the stability
of equilibriumx∗ with respect to the perturbations in the directionsorthogonalto this manifold, it is sufficient to have
all other eigenvalues inside the unit circle. If this condition is satisfied, then equilibriumx∗ of the system is stable, but
not asymptotically stable. Sinceλj < 1 for all j and sincēe > 0, this sufficient condition can be expressed through the
roots of the last term in (G.16). This term is exactly polynomial (4.16).

If all the survivors are characterized by the same parameterλ ∈ [0, 1), the last factor in (G.16) reduces to

(λ− µ)k−1

(
µ (λ− µ) + (1− λ)

1− µ〈
x2

〉
k∑

j=1

ϕ∗j f ′j,y

)

and the result of Corollary directly follows applying standard conditions to the second-degree polynomial in the paren-
thesis above.
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