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Theory and Practice

Economics consists of theoretical laws which
nobody has verified

and of empirical laws which
nobody can explain. [Michal Kalecki, 1945]



Two specific questions

The inverse relationship between the size of the firm and the variance
of its growth rates. Can we investigate its origin?

G.Bottazzi and A.Secchi Gibrat’s Law and Diversification Industrial
and Corporate Change, 15, pp. 847-875, 2006

What is the source of the seemingly universal tent shape of the firm
growth rate distribution?

G.Bottazzi and A.Secchi Explaining the Distribution of Firms Growth
Rates Rand Journal of Economics, 37, pp. 234-263, 2006
G.Bottazzi, A.Secchi Why are distributions of firm growth rates
tent-shaped? Economic Letters vol. 80 pp.415-420, 2003



The evidence

From COMPUSTAT database
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typical slope 0.2 is between 0, no scaling, and 0.5, pure “portfolio
effect”.



The Data

PHID: developed by EPRIS Program sponsored by Merck
Foundation. Sales of a panel of 198 multinational companies in the
period 1987 to 1997.

Disaggregated in different micro-classes according to the Anatomical
Classification System (ACS). 4-digit disaggregation defines 393
different submarkets.



Definition of the variables

Let Si(t) be the size (total sales) of firm i at time t. Consider the log
size

si(t) = log(Si(t))

and the (log) growth rates

gi(t) = si(t + 1)− si(t) .

One can investigate
gi(t) ∼ α+ βsi(t) .

or higher moments.



Binned Regression

Ψ(g|s) = α+ β s , Ψ = cumulant

Relation Slope Std Error

Size-Mean -0.11 0.08

Size-Std -0.21 0.02

Size-Skewness -0.12 0.09

Size-Kurtosis -0.03 0.11



Scatter plot Log(Growth
Std.Dev.)-Log(Size)
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Atomic components

Firms composed by “atomic” units (plants, lines of business,
products) of roughly fixed size.

Su unit fixed size

Ni(t) = Si/Su number of units composing firm i at time t.

Gi,j(t) growth rate of the j-th unit of firm i.



“Portfolio” decomposition

The aggregate growth can be decomposed in its atomic components

Gi(t) =
1

Ni(t)

Ni(t)∑
j=1

Gi,j(t)

if Gi,j(t) are independent

σ(Gi(t)) ∼ 1/
√

Ni ∼ 1/
√

Si .

Too much!!



Definition of the Variables

Sij(t) sales of firm i in sector j at time t.

Ni(t) Set of active submarkets of firm i at time t.

Gij(t) = Sij(t + 1)/Sij(t)− 1 sectoral growth rates.

Gi(t) =
Si(t + 1)

Si(t)
− 1 =

∑
j∈Nj(t)

Sij(t + 1)

Si(t)
− 1 .

Firm size is previously rescaled such that
∑

i Si(t) = 1 at each t (get
rid of nominal or aggregate real effects).



Disentangling different contributions

Gi(t) =
∑ Sij(t + 1)

Si(t)
− 1 =

∑
j

1
Ni(t)

Gij(t) ∆ij(t) (1)

where

• Gij(t) =
Sij(t + 1)

Sij(t)
− 1 Growth in a given sub-market

• ∆ij(t) =
Ni(t) Sij(t)

Si(t)
Diversification structure

• Ni(t) Number of active submarkets



Sectoral Growth rates

From the data we observe that growth rates in different sub-markets
are uncorrelated! (r ∼ 0.03, not significant), so that

varit[Gi(t)] =
∑

j

varit

[
Gij(t)∆ij(t)

1
Ni(t)

]
(2)

The relation varit[Gi(t)] ∼ Si may come from:

1 Increasing returns to scale: Gij ∼ Si

2 Degree of corporate coherence: ∆ij ∼ Si

3 Diversification effect: Ni(G) ∼ Si



First possible source: Gij ∼ Si?
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Figure: Average sub-market growth rates vs. firm size. Bars represent two
standard errors.

No increasing (decreasing) returns to aggregate scale.



Second possible source: ∆ij ∼ Si?

Diversification heterogeneity index:

∆̃i(t) =

√
(
∑Ni(t)

j=1 ∆i,j(t)− 1)2√
Ni(t)(Ni(t)− 1)

The index range from 0, evenly distributed activity, to 1, complete
concentration.



Second possible source: ∆ij ∼ Si?
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Figure: Scatter plot of ∆̃ and firm log-size s

No different diversification structure at different sizes.



Third possible source: Ni ∼ Si?
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Figure: The number of active submarkets as a function of firm log-size. In
the inset: the log of active submarkets.

The sole diversification explains the relation: N ∼ S.35
i hence

varit[Gi(t)] ∼ N1/2 ∼ S.18
i .



A Stochastic Model of Firm Diversification

What we learned: power-like relation between the number of active
sectors and the size of the firm.

Log(size) is the independent variable.

P(n, s; m, s′) = probability that a firm which possesses n active
markets when its (log) size is s, will possess m ≥ n active markets
when its (log) size is s′ ≥ s



Random diversification

s 3s 2

s

1s

• Diversification events are seen as mutually independent “events”.
• these events are uncorrelated in time.
• neglects the possibility of “instantaneous” multiple events.



Poisson process (infinitesimal description)

Consider the transition probability P(n, s; m, s + δ) (joint probability)
between two sizes differing by an infinitesimal quantity δ

P(n, s; m, s + δ) =

{
λ δ + o(δ) m = n + 1
o(δ) m > n + 1

.

Whence the Chapman-Kolmogorov equation{
pn0(s + δ) = pn0(s) P(n0, s; n0, s + δ), n = n0
pn(s + δ) = pn−1(s) P(n− 1, s; n, s + δ) + pn(s) P(n, s; n, s + δ), n > n0 ,

where Pn(s) is the probability that a firm of size s is active in n
sub-markets.



Poisson process (master equation)

Substituing and takig the limit δ → 0 one gets the master equation{
p′n(s) = −λ pn(s) + λ pn−1(s) n > n0
p′n0

(s) = −λ pn0(s) n = n0 ,

with initial conditions

pn(s0) =

{
1, n = n0
0, n 6= n0 .

depending on initial size s0 and initial number of active sub-markets
n0.



Poisson process (solution)
The solutions foe s ≥ s0 and n ≥ n0 reads

pn(s) =
λ(s− s0)n−n0

(n− n0)!
e−λ(s−s0) n ≥ n0 .

It is easy to compute the average

m(s) =
+∞∑
n=0

n pn(s) = n0 + λ(s− s0)

and the variance

σ2(s) =
+∞∑
n=0

(n− m(s))2 pn(s) = λ(s− s0)

Variance increases proportionally to log(size)



Generalized Poisson process

λ→ Λ(s) probability to enter in a new market when the size is s.
If Λ′(s) > 0 scale economies to diversification
If Λ′(s) < 0 barriers to diversification for larger firms.
Formally for δ << 1 one has

P(n, s; m, s + δ) =

{
Λ(s) δ + o(δ) m = n + 1
o(δ) m > n + 1

.

The average and variance

m(s) = n0 + θ(s; s0) σ2(s) = θ(s; s0)

where
θ(s; s0) =

∫ s

s0

dx Λ(x) .

Possible power-like relation between N and S



1s

s

s 2 s 3

Trying to open the diversification “black box”: diversification as a
branching process: each opened branch (sub-market) becomes
eventually the origin of a new branching (diversification) event.



Yule process

Formally for δ << 1 one has

P(n, s; m, s + δ) =

{
nλ δ + o(δ) m = n + 1
o(δ) m > n + 1 ,

The average number of active sectors and variance

m(s) = n0 eλ(s−s0) σ2(s) = n0 eλ(s−s0)
[
eλ(s−s0) − 1

]
.

where n0 > 0 is the initial number of active sectors.
Power-like relation between N and S



Validation 1: variance-average relation

Both generalized Poisson and Yule predict power-like relation
between N and S.
Look at the relation between conditional mean and conditional
variance.
For generalized Poisson

σ2(s) = m(s) + n0 ,

For Yule
σ2(s) =

1
n0

m(s)2 − m(s) ,



Variance-average binned plot

Figure: Sample variance of the number of active sectors versus its average
for firms in different equipopulated size classes.
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Validation 2: empirical density of number
of sectors
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Figure: The binned probability density for the number of sub-market
computed directly by the data and theoretically predicted by the Poisson and
Yule models.



In summary

• The relation between a size of a firm and the variance of its
growth rates has a long story! We provide evidence that in the
Pharmaceutical sector this effect is completely due to the
diversification dynamics

• The diversification dynamics is explained by a model supporting
the dual interpretation of “increasing return to scope economy”
and the existence of “limit to diversification” (technological?
organizational?)



Firms Size

Let Si(t) be the size of firm i at time t. Consider the normalized (log)
size

si(t) = log(Si(t))− < log(Si(t)) >i (3)

Main results on empirical firms size densities

1 Heterogeneity of shapes across sectors

2 Bimodality and no log-normality

3 Separation core-fringe

4 Paretian upper-tails?



Empirical Size Densities - US
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Empirical Size Densities - ITA
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Firms Growth Rates

We build firms growth rates as the first difference of Si

gi(t) = si(t)− si(t − 1) (4)

Main results on empirical growth rates densities

1 shape is stable over time

2 display similar shapes across sectors

3 look similar to the Laplace

4 present similar width(?)



Empirical Growth Rates Densities - US
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Empirical Growth Rates Densities - ITA
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The Subbotin Distribution

fS(x) =
1

2ab1/bΓ(1/b + 1)
e−

1
b | x−µ

a |
b
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Mikhail Fyodorovich Subbotin (1883-1966)



ML Estimation Procedure

We consider:

− log(LS(x; a, b, µ)) =

n log
(

2b1/b a Γ(1 + 1/b)
)

+ (bab)−1
n∑

i=1

|xi − µ|b (5)

and we minimize it with respect to the parameters using a multi-step
procedure.

These ML estimators are asymptotically consistent in all the
parameter space, asymptotically normal for b > 1 and asymptotically
efficient for b > 2.



Estimates on Italian Sectors

Parameter b Parameter a

Ateco code Sector Coef. Std Err. Coef. Std Err.

151 Production, processing and preserving of meat 0.83 0.05 0.089 0.004

155 Dairy products 0.91 0.07 0.080 0.004

158 Production of other foodstuffs (brad, sugar, etc...) 0.89 0.05 0.097 0.004

159 Production of beverages (alcoholic and not) 0.88 0.06 0.108 0.006

171 Preparation and spinning of textiles 1.19 0.07 0.142 0.005

172 Textiles weaving 1.12 0.06 0.122 0.004

173 Finishing of textiles 1.11 0.06 0.107 0.004

175 Carpets, rugs and other textiles 1.02 0.08 0.118 0.006

177 Knitted and crocheted articles 0.97 0.05 0.124 0.005

182 Wearing apparel 0.92 0.03 0.120 0.003

191 Tanning and dressing of leather 1.12 0.09 0.140 0.007

193 Footwear 1.12 0.05 0.150 0.004

202 Production of plywood and panels 0.98 0.09 0.104 0.007

203 Wood products for construction 0.94 0.08 0.105 0.007

205 Production of other wood products (cork, straw, etc...) 1.31 0.13 0.106 0.006



Estimates on US Sectors

Parameter b Parameter a

Ateco code Sector Coef. Std Err. Coef. Std Err.

20 Food and kindred products 0.9888 0.0010 0.7039 0.0005

23 Apparel and other textile products 1.0819 0.0027 0.7664 0.0013

26 Paper and allied products 1.0999 0.0024 0.7663 0.0011

27 Printing and publishing 0.9621 0.0015 0.7115 0.0008

28 Chemicals and allied products 1.0164 0.0004 0.7562 0.0002

29 Petroleum and coal products 1.1841 0.0043 0.8370 0.0019

30 Rubber and miscellaneous plastics products 0.9487 0.0018 0.7148 0.0010

32 Stone, clay, glass, and concrete products 1.1023 0.0039 0.7720 0.0018

33 Primary metal industries 1.1254 0.0015 0.7870 0.0007

34 Fabricated metal products 0.9081 0.0013 0.6639 0.0007

35 Industrial machinery and equipment 0.9466 0.0003 0.6761 0.0002

36 Electrical and electronic equipment 0.8989 0.0003 0.6303 0.0001

37 Transportation equipment 1.0033 0.0011 0.7107 0.0005

38 Instruments and related products 0.9722 0.0004 0.6980 0.0002

39 Miscellaneous manufacturing industries 1.0232 0.0022 0.7447 0.0011



The Theoretical Framework

Observed growth as the cumulative effect of diverse “events”

g(t; T) = s(t + T)− s(t) = ε1(t) + ε2(t) + . . . =

G(t;T)∑
j=1

εj(t)

• The Gibrat Tradition: εj are r.v. independent from size s (strong
form: εj are i.i.d.) Limitation: No interaction among firms
• Simon’s model introduces a finite number of M opportunities

progressively captured by N firms. G(t; T) becomes a r.v.
Limitation: Equipartition of opportunities among firms→
Gaussian growth rates



The Model

Multi-step simulation model

Business Events→Micro-Shocks→ Growth

Self-reinforcing effect in events assignment. Idea of “competition
among objects whose market success...[is] cumulative or
self-reinforcing” (B.W. Arthur)

Discrete time stochastic growth process; at each round a two steps
procedure is implemented:

• determine the number of events captured by a firm, G(t; T)

• disclose εj j = {1, . . . ,G(t; T)}, i.e. the effect of these events
on firm size



STEP 1 - The Assignment of Business
Events

1 Consider an urn with N different balls, each representing a firm

2

Draw a ball and replace
with TWO of the same kind.
(Here the first draw from an
urn with two types of ball)

A B

A A B A BB

Draw A Draw B

3 Repeat this procedure M times

RESULT: partition of M events on N firms.



STEP 2 - The Generation of Shocks

From the previous assignment procedure

mi(t) = # of opportunity given to firm i at time t

A very simple relation between “opportunities” and growth:

si(t + T)− si(t) =

mi(t)+1∑
j=1

εj(t) (6)

ε are i.i.d. with a common distribution f (ε).

Run the simulation and collect statistics.



Simulation Results
Growth rates densities for N = 100 and different values of M.
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Simulation Results - Cont’d
We define D = |Fmodel(x; M,N)− FL(x)| the absolute deviation
between the empirical growth rates distribution (as approximated by
the Laplace) and the distribution predicted by the model. Here D as a
function of the number of firms N and the average number of
micro-shocks per firm M/N.
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Why does the Model work?

The unconditional growth rates distribution implied by this model is
given by

M∑
h=0

P(h; N,M)︸ ︷︷ ︸
Events Distribution

F(x; v0)F(h+1)︸ ︷︷ ︸
Distribution of the sum of h micro-shocks

.

In the assignment procedure above P follows a Bose-Einstein

P(h; N,M) =
P(X)

P(X|m1 = h)
=

(N+M−h−2
N−2

)(N+M−1
N−1

)
while follows a Binomial in the Simon tradition.



Occupancy Statistics
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Bose-Einstein and binomial with N = 100 and M = 10, 000.



“Large Industry” Limit

Theorem
Suppose that the micro-shocks distribution possesses the second
central moment σ2

ε <∞. Under the Polya opportunities assignment
procedure the firms growth rates distribution converges in the limit for
N,M →∞ to a Laplace distribution with parameter

√
v/2, i.e.

lim
M,N→∞

fmodel = fL(x;
√

v/2) =
1√
2v

e−
√

2/v |x|

where v = σ2
εM/N.



Concluding Remarks on the Model

• A new stylized fact has been presented

• We show its robustness under disaggregation

• Our original explanation is based on a general mechanism of
short-horizon “dynamic increasing returns” in a competitive
environment

• We provide a “Large Industry” Limit Theorem

• Simulations show that “Large” is not so large
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Databases

FORTUNE 500 Annual ranking of America’s largest public
corporations as measured by their gross revenue compiled by Fortune
magazine.

COMPUSTAT U.S. publicly traded firms in the Manufacturing
Industry (SIC code ranges between 2000-3999) in the time window
1982-2001. We have 1025 firms in 15 different two digit sectors.

MICRO.1 Developed by the Italian Statistical Office(ISTAT). More
than 8000 firms with 20 or more employees in 97 sectors (3-digit
ATECO) in the time window 1989-1996. We use 55 sectors with
> 44 firms.



Empirically based Industrial Dynamics

The Law Finding Process (i.e. “Retroduction”)

1 Looking for facts

2 Finding simple generalizations that describe the facts to some
degree of approximation

3 Finding Limiting conditions under which the deviations of facts
from generalization might be expected to decrease

4 Explaining why the generalization “should” fit the facts

5 The explanatory theories generally make predictions that go
beyond the simple generalizations and hence suggest new
empirical tests.
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