
Spanning tree and spanning forest

Giulio Bottazzi

19 April 2010

Contents

1 Introduction 1

2 Weighted graph and spanning tree 1
2.1 Spanning tree . 2

3 Finding minimum and maximum spanning tree 3

4 Example 3

1 Introduction

The source files in spanntree.tar.gz contains several routines that compute
the maximum and minimum spanning tree for ordered or unordered graphs.
They can be used both for connected graphs or for graphs characterized by
several disjoint parts. The routines are implemented as C function, which
can be easily linked to any application. A simple program is provided which
computer minimum and maximum spanning tree for a graph provided at the
command line.

2 Weighted graph and spanning tree

A weighted graph can essentially be of two types: directed and undirected.
A directed graph can be seen as a collection of vertexes and of links

connecting them, called edges. Links have a source vertex and a destination
vertex, and are associated a weight. For instance in the figure the edge

1

file:///home/giulio/doc/org-webpage/software/spanntree/spanntree.tar.gz

../img/graph.png

Figure 1: Weighted directed graph

connecting vertex 5 and 3 is associated a weight of 2. A graph can be
formally represented in essentially two ways: a list of edges, reporting for
each edge the origin and destination vertexes together with the weight, or an
andjacency matrix, in which each row and each column represent a different
vertex and the associated entry is the wight of the edge linking the two. For
the graph in the picture, the first representation would be 2 1 2 3 2 1 4 5 2
5 3 2 5 1 3 6 4 1 while the second is 0 0 0 0 0 0 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 5 3 0 2 0 0 0 0 0 0 1 0 0 This representation adopts the convention that
an entry of zero, i.e. a zero wright, represent a missing link.

In an undirected graph, the “direction” of the edges is not relevant. So
if vertex 1 is connected to vertex 2, the latter is automatically connected to
the first. A weight is again assigned to each edge. It is immediate to see that
a undirected graph can be seen as a special case of a directed graph. The list
of edges will contain couples of edges, with the same weights, where origin
and destination vertexes are swapped, while the matrix representation will
be a symmetric matrix.

2.1 Spanning tree

Given a graph, a subset of its edges represent a subgraph. Essentially is a
new graph obtained removing some of the original links.

A spanning tree is a subgraph of the original graph, which connect all
the vertexes that where originally connected. This means that removing an
edge form a spanning tree, at least a couple of vertexes that were originally
connected get disconnected. The definition of spanning tree does not only
apply to fully connected graph. When applied to disconnected graph it often
takes the name of spanning forest.

The above definitions do not use the weight associated to the edges. The
weights are however relevant for the definition of a maximum spanning tree

2

(MST). A spanning tree is a MST if the sum of the weights of its vertexes is
not lower than the sum of the weights of the vertexes of any other spanning
tree.

Analogously a minimum spanning tree (mst) is a spanning tree such that
the sum of the weights of its edges is not greater than the sum of the edges
of any other spanning tree.

Notice that these definition do not imply that the MST or the mst is
unique.

3 Finding minimum and maximum spanning tree

The efficient algorithm for the identification of a minimum or maximum
spanning tree makes use of the so called disjoint set data structure. The
algorithm that makes use of this set is called an union find algorithm. Es-
sentially it incrementally builds sets of related objects.

The implementation in C is contained in union_find.h and union_find.c.
It is a modified version of the code available from literateprograms.org. The
modifications reflect the pseudo-code discussed here.

The actual code which perform the the MST and mst is contained in
graph.c. It is based on the [[[[http://en.wikipedia.org/wiki/Kruskal%27s_algorithm][Kruskal’s][http://en.wikipedia.org/wiki/Kruskal%27s_algorithm][Kruskal’s]]]]
algorithm. The basic functions are

void Mst(size_t V, Edge *edges, size_t E, Edge **tree, size_t *T)

and

void mst(size_t V, Edge *edges, size_t E, Edge **tree, size_t *T)

which computes a Maximum and minimum spanning tree (or forest, in
case of disjoint graph), respectively. The first three arguments of the function
define the initial graph: V is the number of vertexes, edges is an array of
Edges which define the graph and E is its length. The function store the
spanning tree in the array (*) tree and its length in T. Notice that if the
original graph is made of P disjoint parts, it is T=V-P. If the graph is
connected, then P=1 and T=V-1.

4 Example

As an example of the use of the routines in graph consider a simple programs
which reads a graph as a list of edges from the standard input and return
the minimum and maximum spanning tree

3

http://en.wikipedia.org/wiki/Disjoint-set_data_structure
file:///home/giulio/doc/org-webpage/software/spanntree/union_find.h
file:///home/giulio/doc/org-webpage/software/spanntree/union_find.c
http://en.literateprograms.org/Disjoint_set_data_structure_(C)?oldid=13366
http://en.wikipedia.org/wiki/Disjoint-set_data_structure
file:///home/giulio/doc/org-webpage/software/spanntree/graph.c

int main(){

size_t i;

/* initial graph */
size_t N; /* number of nodes */
size_t E; /* number of edges */
Edge * graph=NULL; /* original graph */
size_t orig,dest;
double weight;

/* spanning forest */
Edge * tree=NULL; /* spanning forest */
size_t T; /* edges in the spanning forest */
double wt; /* total weight of the spanning forest */

/* load the graph */
E=0;
N=0;
while(scanf("%zd %zd %lf",&orig,&dest,&weight) != EOF){

E++;
if(orig>N) N=orig;
if(dest>N) N=dest;
graph = (Edge *) realloc(graph,E*sizeof(Edge));
graph[E-1].orig = orig;
graph[E-1].dest = dest;
graph[E-1].weight = weight;

}

/* compute the minimum spanning tree */
mst(N,graph,E,&tree,&T);

/* output the result */
printf("#minimum spanning tree\n");
wt=0;
for(i=0;i<T;i++){

printf("%zd %zd %f\n",tree[i].orig,tree[i].dest,tree[i].weight);
wt += tree[i].weight;

}
printf("#total weight = %f\n",wt);

4

/* compute the maximum spanning tree */
Mst(N,graph,E,&tree,&T);

/* output the result */
printf("#maximum spanning tree\n");
wt=0;
for(i=0;i<T;i++){

printf("%zd %zd %f\n",tree[i].orig,tree[i].dest,tree[i].weight);
wt += tree[i].weight;

}
printf("#total wight = %f\n",wt);

return 0;

}

The number of vertexes is obtained from the list of provided edges. Down-
load the example spanntree.c and compile it using gcc spanntree.c graph.c
unionfind.c -o spanntree then run it on whatever graph you want.

5

file:///home/giulio/doc/org-webpage/software/spanntree/spanntree.c

	Introduction
	Weighted graph and spanning tree
	Spanning tree

	Finding minimum and maximum spanning tree
	Example

