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Who are we?

Angelo Secchi

� Université Paris 1 Panthéon-Sorbonne, Centre d’Economie
� Bocconi University (undergrad. economics), Sant’Anna

School of Advanced Studies (PhD)
� industrial organization, industrial dynamics and applied

econometrics

Senne Jung

� PhD candidate Paris School of Economics and Université
Paris 1 Panthéon-Sorbonne

� Yonsei University (undergrad. mathematics), Seoul
National University (MA in Economics), Paris school of
economics(MA in Economics)

� applied microeconomics, labour economics, behavioral
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Organization

Everything Microeconomics EPI web page

Readings
� no required textbook
� Jehle and Reny - Advanced Microeconomic Theory

(expensive)
� Varian - Microeconomic Analyses
� further readings and Syllabus on EPI
� slides available Monday evenings on EPI, print them out

before classes
� warnings on slides: howto use them, handle them with care

Contacts
� angelo.secchi@univ-paris1.fr Put [MICRO] in the Subject
� in case you need to talk with me, drop an email to make an

appointment
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Organization - cont’ed

Exam: written, closed book

� MIDTERM November 3,2011 2pm-5pm
� FINAL January 10,2012 2pm-5pm

Grading policy
� 50% midterm and 50% final
� grades range: 0� 20. There is no formal Failure threshold.
� To validate the semester you must have an average grade of

10. If your semester average is lower than 10, you must
retake all the exams with a grade lower than 10.

� To validate the year and henece to obtain the Master you
must have an overall average grade of 10.

Code of Conduct: honesty, integrity and respect.
� ignorance is not an excuse, check the Code on the EPI
� Board of Examiners is very strict in applying the Code
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Organization - cont’ed
Class timing(tentative)
2.00-3.30 3.30-3.45 3.45-4.45 4.45-5.00
class s break class R&S Q&A

Maths
Maths is not the subject of this course but the
formalization of economic intuitions discussed in ECON101
is the main aim of our classes. If you have problems
contact one of your tutors.

(Hopefully useless) Notes
� Exams will not be rescheduled. No exceptions. Do not

make plans or travel reservations for the exam week. This is
not a valid excuse for rescheduling exams.

� In case of exceptional events contact, as soon as possible,
one of your tutors.

� Please turn off cell phones and other noisemakers during
class.
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Tentative schedule

20 Sep Introduction.
27 Sep Consumer theory.
4 Oct Duality, Slutsky and the integrability problem.
11 Oct Production theory.
18 Oct Uncertainty.
25 Oct Partial equilibrium analysis. Catch up and review

before the midterm exam.
3 Nov MIDTERM EXAM (covers classes until 18 Oct )
8 Nov General equilibrium in pure exchange economy.
15 Nov General equilibrium with production. Core.
22 Nov Game theory I: strategic form games.
29 Nov Game theory II: extensive form games.
6 Dec Adverse selection, moral hazard and the agency problem.
13 Dec Catch up and review before the final exam.
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Ariel Rubinstein’s Warnings

Many economists have strong and conflicting views about what
economic theory is

set of theories that can/should be tested

bag of tools to be used by economic agents

framework through which professional and academic
economists view the world
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Ariel Rubinstein’s Warnings
Disappointment for those of you who have come to this course
with practical motivations

economic theory is no more than an arena for the
investigation of concepts we use in thinking about
economics in real life and models provide a language to try
to understand reality better BUT

I do not view economic models as an attempt to describe
the world or to provide tools for predicting the future

I object to looking for an ultimate truth in economic theory

I do not expect it to be the foundation for any policy
recommendation

However, an economic model differs substantially from a purely
mathematical model in that it is a combination of a
mathematical model and its interpretation.
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Microeconomics

Microeconomics is a collection of models in which the
primitives are details about the behavior of units called
economic agents (not necessarily individuals).

An economic agent is described in our models as a unit, that
following a deliberation process(rational choice), make a choice
from a set of available alternatives. The process consists in

asking himself “What is desirable?”

asking himself “What is feasible?”

choosing the most desirable from among the feasible
alternatives.

Note the order of the stages: rational economic agent’s desires
are independent of the set of alternatives. Also rationality in
economics does not contain judgments about desires.
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Microeconomics

Economists have become increasingly aware that almost all
people, almost all the time, do not practice this kind of
deliberation!

Is it meaningful to talk about the concept of “being good” even
in a society where all people are evil? Similarly : : :

Further reading

Rubinstein, A., “Dilemmas of an economic theorist”
http://arielrubinstein.tau.ac.il/papers/74.pdf[clickable]
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Preferences

Why do we start with preferences?

“Preferences” are one of the building block of microeconomic
models

imagine you want to fully describe the preferences of an
economic agent over a set X of alternatives

what should this description include?

is there any requirement this system of preferences should
fulfill?

Let’s introduce this concept in a simple intuitive manner with a
modeling exercise.
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Preferences - Questionnaire Q

consider an economic agent and a set of alternatives X

for all x and y in X the agent is confronted with the
question Q(x ; y): how do you compare x and y?

select one of the following

� I prefer x to y , x � y
� I prefer y to x , x � y
� I’m indifferent, x � y
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Preferences - Legal answer

one and only one choice is permitted

we exclude answers such as: they are incomparable, I do
not know, I prefer x to y but also y to x, it depends on my
girlfriend’s taste or on the weather

we ignore the intensity of preferences

Do we qualify all the legal answers to the questionnaire Q
qualify as preferences over the set X? NO
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Preferences - Consistency restrictions

We adopt two “consistency” restrictions

Q(x ; y) must be equal to Q(y ; x ) [No order effect]

the answers to Q(x ; y), Q(y ; z ) and Q(x ; z ) must be
consistent. That is, if the answer to Q(x ; y), Q(y ; z ) is
“preference” then also Q(x ; z ) must be answered
“preference”. Same in case of indifference. [Transitive]
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Preferences - Questionnaire R

A second way to think about preferences is via a different
questionnaire. Again

consider an economic agent and a set of alternatives X

for all x and y in X the agent is confronted with the
question R(x ; y): is x at least as preferred as y?

select one of the following

� Yes
� No
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Preferences - Legal answer

one and only one choice is permitted

R(x ; y) must be equal to R(y ; x ) [No order effect]

if the answers to R(x ; y) and R(y ; z ) is “yes” then also the
answer to R(x ; z ) must be “yes” [Transitive]

The two representations of agent’s preferences are equivalent
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Preferences - caveats and limitations

Transitivity seems a reasonable assumption. However,

real experiments show frequent violations of transitivity

it excludes individuals that base their judgment on
procedures such

� aggregation of primitive considerations

� similarity among alternatives
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Preferences - Aggregation and intransitivity

Aggregation of primitive considerations may break transitivity

Suppose an individual has to choose among 3 alternatives on
which he has three primitive considerations and finds an
alternative better than another one if the majority of primitives
support it.

Consider the following rankings table

PRIMITIVES x y z
consid. A 1 2 3
consid. B 3 1 2
consid. C 2 3 1

In this case x � y , y � z but z � x
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Preferences - Similarities and intransitivity

Similarity among alternatives may break transitivity

Consider an individual whose attitude is “the larger the better”.
However he cannot distinguish among alternatives unless their
difference is greater than 1.

f (x ; y) = x if x � y + 1

f (x ; y) = I if jx � y j < 1

then 1:5 � 0:8, 0:8 � 0:3 but 1:5 � 0:3 is not true
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Utility

Think of examples of preferences.

if the alternatives are few we may simply rank them:
base additive colors(RGB): red�green�blue

if alternatives are many (most often)
basketball players: I prefer the taller basket players

All these examples can naturally be specified by a statement of
the form

x � y if V (x) � V (y)

where V : X ! R is a function that attaches a real number to
each element in the set of alternatives X. V(x) is called utility
function and � is said to have an utility representation
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Utility
Comments

Note that the statement x�y if V (x)� V (y) always
defines a preference relation since the relation � on R
satisfies completeness and transitivity

It is possible to avoid the notion of a utility representation
and to do economics only with the notion of preferences

when defining a preference relation using a utility function,
the function has an intuitive meaning that carries with it
additional information

in contrast, when the utility function is formed to
represent an existing preference relation, the utility
function per se has no meaning.
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Utility
Comments

Note that the statement x�y if V (x)� V (y) always
defines a preference relation since the relation � on R
satisfies completeness and transitivity

It is possible to avoid the notion of a utility representation
and to do economics only with the notion of preferences

when defining a preference relation using a utility function,
the function has an intuitive meaning that carries with it
additional information

in contrast, when the utility function is formed to represent
an existing preference relation, the utility function per se
has no meaning. Absolute values are meaningless!
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Choice

until now we have avoided any reference to agent’s
behavior, we only talked about preferences as a summary
of the decision maker’s mental attitude toward a set of
alternatives

consider now the usual set of alternatives X , a choice
problem may be viewed as a nonempty subset of X, and we
refer to a choice from A � X as specifying one of A’s
members

representing a choice problem in this way implies that
agent’s choice does not depend on the way alternatives are
presented
� ignores the order in which alternatives are presented
� ignores the number of time alternatives appear in A
� ignores if the are “defaults”
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Choice - Rationality assumption

It is typically assumed in economics that choice is an outcome
of rational deliberation

economic agent has in mind a preference relation � on the set
X and, given any choice problem A � X , he chooses x 2 A

OPTIMAL with respect to �
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Choice - Critiques to rationality

Economists were often criticized because of the assumption
of rationality

economists’ defense: we don’t really need this assumption.
All we need to assume is that the decision maker’s
behavior can be described as if he were maximizing some
preference relation

a modern attack, behavioral economics.
Economics+Psychology, A. Tversky and D. Kahneman
(Nobel laureate in economics in 2002). They have
demonstrated not only that rationality is often violated,
but that there are systematic reasons for the violations: : :

30 / 173



Choice - Critiques to rationality

FRAMING
Consider the following formulations of a plan to react to a
national pandemia

formulation A

� (a) 400 people will die
� (b) 0 will die with probability 1/3 and 600 will die with

probability 2/3

formulation B

� (c) 200 people will be saved
� (d) 600 will be saved with probability 1/3 and 0 will be

save with probability 2/3
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Choice - Critiques to rationality

The two questions were presented to 2 groups of people: 78%
chose b and only 28% chose d

Both questions presented in the above order to game theory
students: 78% chose b and only 49% chose d.

large proportion of subjects gave different answers to the
two problems

results highlight the sensitivity of choices to the framing of
alternatives

what is more damaging for rational decision making than
observing different answer to the same question only
because they are presented differently?
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Choice - Critiques to rationality

SIMILARITIES
Consider the following gambling games

(a)
color white red green yellow
probability 90 6 1 3
price e 0 45 30 -15

(b)
color white red green yellow
probability 90 7 1 2
price e 0 45 -10 -15

Which one would you choose?

33 / 173



Choice - Critiques to rationality

Consider now the following gambling games

(c)
color white red green blue yellow
probability 90 6 1 1 2
price e 0 45 30 -15 -15

(d)
color white red green blue yellow
probability 90 6 1 1 2
price e 0 45 45 -10 -15

Which one would you choose?
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Choice - Critiques to rationality

experiments on two groups of students: in the first group
58% selected ’(a)’ while in the second group nobody chose
’(c)’

when both choice problems, one after the other, were posed
to the same students: 52% chose ’(a)’ and 7% ’(c)’

rationale: we often transfer complicated problem into
simpler ones by “canceling” similar elements
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Choice - Critiques to rationality

REASON-BASED CHOICE

example of cameras: one group with two alternatives (same
brand, one lower quality for 170e and the other higher
quality 240e), another group with a third alternative (top
quality camera for 470e). Guess what happens to the
number of people choosing the 240e camera: : :

making choice sometimes requires finding motives to pick
one alternative over the others

in this kind of situations, choice is based on “internal
reasons”, and it is often difficult to reconcile the actual
choices with the rational paradigm
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Choice - Critiques to rationality

REASON-BASED CHOICE

example of cameras: one group with two alternatives (same
brand, one lower quality for 170e and the other higher
quality 240e), another group with a third alternative (top
quality camera for 470e). Guess what happens to the
number of people choosing the 240e camera: : : Internal
reason: compromising alternative

making choice sometimes requires finding motives to pick
one alternative over the others

in this kind of situations, choice is based on “internal
reasons”, and it is often difficult to reconcile the actual
choices with the rational paradigm
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Summing Up

preferences on X are binary relations on X satisfying
completeness and transitivity. They can be formalized in
different but equivalent ways

a system of preferences can be represented by an utility
function which has no meaning other than that of
representing a preference relation

a choice problem is seen as a nonempty subset of X and a
choice consists in selecting the element of this subset that
is optimal wrt the system of preferences considered
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Consumer Theory - Introduction

Consumer theory is characterized axiomatically: few
“meaningful” assumptions are set forth; the rest of the theory is
then developed via the process of deduction

There are four main building blocks:

CONSUMPTION SET: set of all the alternatives X ;

FEASIBLE SET: set of all the conceivable and realistically
obtainable alternatives B � X given the consumers’
circumstances (income, prices);

PREFERENCE RELATION: specifies limits, forms of
consistencies and inconsistencies of the consumer’s ability
to make choice among alternatives;

BEHAVIORAL ASSUMPTION: principles guiding the
consumer in his choice.
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Preference relations

we represent the consumer’s preference by a binary relation
� defined on the consumption set X .

x 1 � x 2 x 1 is at least as good as x 2

where x i = (x1; : : : ; xn) is consumption bundle with
x 2 X � Rn

+

using a binary relation implies that the consumer examines
only two alternative consumption bundles at a time and
makes a decision between those two

we impose two other important restrictions
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Preference - Axioms

COMPLETENESS: For all x 1 and x 2 2 X , either x 1 � x 2 or
x 2 � x 1

The consumer has always the ability to discriminate and the
necessary knowledge to evaluate alternatives. Philosophically
questionable: extreme situations.

TRANSITIVITY: For all x 1, x 2 and x 3 2 X if x 1 � x 2 and
x 2 � x 3 then x 1 � x 3

As discussed, this axiom imposes a very peculiar form of
consistencies to consumers’ choices
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Preferences - Definitions

PREFERENCE RELATION: a binary relation � defined on X
is called a preference relation if it satisfies completeness and
transitivity

STRICT PREFERENCE: a binary relation � defined on X as

x 1 � x 2 IFF x 1 � x 2 and x 2 � x 1

is called strict preference relation induced by �

INDIFFERENCE: a binary relation � defined on X as

x 1 � x 2 IFF x 1 � x 2 and x 2 � x 1

is called indifference relation induced by �

Are SPR and IR transitive? Are they complete?
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Preferences - Definitions

PREFERENCE RELATION: a binary relation � defined on X
is called a preference relation if it satisfies completeness and
transitivity

STRICT PREFERENCE: a binary relation � defined on X as

x 1 � x 2 IFF x 1 � x 2 and x 2 � x 1

is called strict preference relation induced by �

INDIFFERENCE: a binary relation � defined on X as

x 1 � x 2 IFF x 1 � x 2 and x 2 � x 1

is called indifference relation induced by �

Are SPR and IR transitive? Are they complete?
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Preferences - Preference set induced by �

Let x 0 2 X . Then we can define

�(x0)� fx jx 2 X ; x � x 0g “at least as good” set

�(x0)� fx jx 2 X ; x � x 0g “no better than” set

�(x0)� fx jx 2 X ; x � x 0g “preferred to” set

�(x0)� fx jx 2 X ; x � x 0g “worse than” set

�(x0)� fx jx 2 X ; x � x 0g “indifference” set
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Preferences - Preference set induced by �

1
X

X
2

X

x0

�(x0)

�(x0)

�(x0)
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Preferences - Axioms
CONTINUITY: For all x 2 X , both �(x ) and �(x ) are closed
sets.

continuity guarantees that sudden preference reversals do
not occur; continuity can be restated as
if each element yn of a sequence is � x and lim

n!1
yn = y

then
y � x

consequence: if both �(x ) and �(x ) are closed then also
�(x ) is closed, non open area exists.

Proof.
Let A and B two closed sets. Then Ac and Bc are open.
Unions of open sets are open sets.
De Morgan’s Law states that Ac[Bc = (A\B)c hence (A\B)c is
open and (A\B) is closed
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Preferences - Axioms

LOCAL NONSATIATION: For all x 0 2 X and for all � > 0,
there exists some x 2 B�(x 0) \ Rn

+ such that x � x 0
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Preferences - Axioms
LOCAL NONSATIATION: For all x 0 2 X and for all � > 0,
there exists some x 2 B�(x 0) \ Rn

+ such that x � x 0

1
X

X
2

X

x0

�(x0)

�(x0)

�

x1

Inside this �-ball
there’s no x � x1
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Preferences - Axioms
LOCAL NONSATIATION: For all x 0 2 X and for all � > 0,
there exists some x 2 B�(x 0) \ Rn

+ such that x � x 0
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Preferences - Axioms

STRICT MONOTONICITY: For all x 0 and x 1 2 Rn
+ if x 0 � x 1

then x 0 � x 1, while if x 0 > x 1 then x 0 � x 1
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Preferences - Axioms

STRICT CONVEXITY: If x 0 6= x 1 and x 1 � x 0 then
tx 1 + (1� t)x 0 � x 0 8t 2 (0; 1)
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Preferences - Axioms
STRICT CONVEXITY: If x 0 6= x 1 and x 1 � x 0 then
tx 1 + (1� t)x 0 � x 0 8t 2 (0; 1)
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Preferences - Axioms

STRICT CONVEXITY: If x 0 6= x 1 and x 1 � x 0 then
tx 1 + (1� t)x 0 � x 0 8t 2 (0; 1)

Intuitively strict convexity can be interpreted in two ways:

more balanced consumption bundles are preferred

the rate at which the consumer is willing to give up x2 in
exchange of x1 (MRS) decreases with x1
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Preferences axioms - Sum up

Completeness and Transitivity describe a consumer who
can make consistent comparisons among alternatives

Continuity guarantees the existence of topologically nice
“�” and “�” sets

Strict Monotonicity and Strict Convexity require that
tastes display some form of “more is better” and “more
balanced is better”

63 / 173



Introduction
preferences
utility
choice

Consumer Theory
preference relations
utility function

Quick Maths Refresh

The Consumer Problem
indirect utility function
expenditure function
the Slutsky equation

Revealed Preferences

Uncertainty

64 / 173



Utility function

In modern economic theory an utility function is a convenient
way to summarize the info contained in the consumer’s
preference relation.

UTILITY FUNCTION: a real valued function u : Rn
+ ! R is

called utility function representing the preference relation � if

8x 0; x 1 2 Rn
+ u(x 0) � u(x 1), x 0 � x 1
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Utility function

Theorem
If � is complete, transitive, continuous and strictly
monotonic there exists a continuous real valued function
u : Rn

+ ! R which represents �.
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Utility function
Theorem
If � is complete, transitive, continuous and strictly
monotonic there exists a continuous real valued function
u : Rn

+ ! R which represents �.

1
X

X
2

x

u(x)e

Z

1

1

45
o

e

e = (1; : : : ; 1)
8� > 0 �e 2 Z

Z= locus of bundles with all
the component equal

u(x) : Rn
+
! R : u(x)e � x
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Proof.

1. Does the number u(x ) satisfying its definition exist?

2. If yes, is it uniquely determined, so that u(x ) is a
well-defined function?

Let us define

A � ft � 0jte � xg

B � ft � 0jte � xg

If t� 2 A \B then t�e � x and hence u(x ) = t� satisfies our
definition. Is A \B a non-empty set? Continuity of � implies
that both A and B are closed set, then by strict monotonicity

t 2 A) t 0 2 A 8t 0 � t ) A = [t ;+1)

t 2 B ) t 0 2 B 8t 0 � t ) B = [0; t ]
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Proof. - cont’ed.
Since � is complete it is either te � x or te � x and then
t 2 A [B . Finally, since A [B = R+ then
A [B = [0; t ] [ [t ;+1) from which it follows that t � t and
hence A \B 6= ;.
We prove the uniqueness by contraddiction. Suppose there are
two numbers satisfying our definition, u1(x ) 6= u2(x ), then

u1(x ) = t1e � x

u2(x ) = t2e � x

which implies (by transitivity) t1e � t2e and hence t1 = t2 that
is in contraddiction with our assumption.

Then 8x 2 Rn
+ 9! u(x ) : u(x )e � x . The proof is concluded by

showing that u(x ) is continuous and represents �.
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Proof. - cont’ed.
To this aim, let’s consider two consumption bundles x 1 and x 2

x 1 � x 2 , u(x 1)e � x 1 � x 2 � u(x 2)e

, u(x 1)e � u(x 2)e , u(x 1) � u(x 2)

To prove that u(x ) is continuous we need to show that the
inverse image under u(:) of every open ball (a ; b) in R is open
in Rn

+. This means

u�1((a ; b)) = fx 2 Rn
+ja < u(x ) < bg

= fx 2 Rn
+jae � x � beg

= �(ae) \ �(be)

By continuity of � both �(ae) and �(be) are closed, then their
complements are open. By De Morgan’s Law and since the
intersection of open set is an open set it follows that u(x ) is
continuous.

�
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Utility function

This theorem is clearly very important since allows us to
avoid(!) the primitive set-theoretic preference relation.

Is the utility function u(x ) representing � unique?

Theorem
Let � be a preference relation on Rn

+ and suppose u(x )
represent it. Then v(x ) = f (u(x )) represents � IFF f(.) is
strictly increasing on the set of values taken by u(x )
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Maths refresh
Geometric interpretation of the gradient. Consider a function
u(x ) : R2 ) R. Using the chain rule we can compute the rate of
change of u(x1; x2) at any given point x � in any given direction
v = (v1; v2)

x = x � + tv t 2 R

g(t) � u(x � + tv) = u(x �1 + tv1; x �2 + tv2)

g 0(0) = ( @u
@x1 (x

�) @u
@x2 (x

�) )

 
v1

v2

!
= Du(x �) v

Sometimes Du(x �) is written as a column vector and is called
gradient, ru(x �). Using the dot product

Du(x �)v = ru(x �) � v =
2X

i=1

@u
@xi

(x �)vi = jjru(x �)jj jjv jj cos �
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Maths refresh

In what direction does the function u(x ) increase most rapidly?
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Maths refresh

In what direction does the function u(x ) increase most rapidly?

ru(x �) � v = jjru(x �)jj jjv jj cos �
�

v

ru
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Maths refresh

In what direction does the function u(x ) increase most rapidly?

ru(x �) � v = jjru(x �)jj jjv jj cos �
�

v

ru

Clearly ru(x �) � v is maximized when cos � = 1, that is when
� = 0o

Theorem
Let u(x ) : D ! R be a C 1 function. At any x 2 D for which
ru(x ) 6= 0 the gradient ru(x ) points into the direction in
which u(x ) increases most rapidly.
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Maths refresh

Theorem (Dini’s)
Let u(x1; x2) be a C 1 function on a ball about (x 0

1 ; x
0
2 ) 2 R

2.
Suppose that u(x 0

1 ; x
0
2 ) = c and consider the level curve

u(x1; x2) = c :

If @u=@x2 6= 0, there exists a function x2 = x2(x1) defined in
an interval I around x 0

1 such that

u(x1; x2(x1)) � c 8x 2 I

x2(x 0
1 ) = x 0

2

x 02(x
0
1 ) = �

@u
@x1 (x

0
1 ; x

0
2 )

@u
@x2 (x

0
1 ; x

0
2 )
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Theorem (Gradient and level curves)
Let u(x1; x2) be a C 1 function on a ball about (x 0

1 ; x
0
2 ) 2 R

2.
Suppose that (x 0

1 ; x
0
2 ) is a regular point of u (either

@u=@x1(x 0
1 ; x

0
2 ) 6= 0 or @u=@x2(x 0

1 ; x
0
2 ) 6= 0). Then

ru(x 0
1 ; x

0
2 ) ? u(x 0

1 ; x
0
2 ) = c :
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Maths refresh
Proof.(sketch).
In general the directional derivative is given by

Du(x �)v = ru(x �) � v :

If we want to move along the level curve it must be

 
@u
@x1 (x

0
1 ; x

0
2 )

@u
@x2 (x

0
1 ; x

0
2 )

!
�

0
B@ 1

�
@u
@x1

(x0
1 ;x

0
2 )

@u
@x2

(x0
1 ;x

0
2 )

1
CA = 0

and since

ru � v = jjru(x )jj jjv jj cos � (1)

we get that �, the angle between the gradient and the tangent
to the level curve must be equal to 90o .

�
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Maths refresh
Geometric intuition behind the Lagrangian. Suppose to have
the following problem

MAX
x

u(x )

s.t. h(x ) = c x�

u0

u1

u2

u3

h(x) = c

In x � the level curves and the constraint present the same
slope, hence

u2

h(x) = c

x�rh

u2

h(x) = c

x�
rh

ruru
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Maths refresh
In either cases the two gradients are scalar multiples of each
other. If we call the multiplier �� we get

ru(x �) = ��rh(x �)

that is

8<
:

@u
@x1 (x

�) = �� @h
@x1 (x

�)
@u
@x2 (x

�) = �� @h
@x2 (x

�)

which together with the constraint h(x ) = c represent the FOC
of our problem. These conditions can be obtained by defining
the Lagrangian L = u(x )� �(h(x )� c) and requiring that

8>><
>>:

@L
@x1 (x

�) = 0
@L
@x2 (x

�) = 0
@L
@�

(x �) = 0
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Maths refresh
Inequality constraint. Suppose to have the following problem

MAX
x

u(x )

s.t. h(x ) � b

h(x) = b

u

x�

h(x) < b

rh

ru

h(x) < b

If h(x �) = b again x � the level curve and the constraint present
the same slope. However,

1. since the constraint is h(x ) � b we know that rh(x ) must
point to the region where h(x ) > b

2. since x � must maximize u(x ) we are sure that ru(x ) must
point to the region where h(x ) > b
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Maths refresh

Hence with the inequality constraint we must add to the usual
condition a positivity constraint on �8<

:ru(x
�) = ��rh(x �)

�� � 0
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Maths refresh
With the inequality constraint we must investigate also what
happens if in h(x �) < b. In this case

h(x) = b

h(x) < b

x�

rh

ru

ru(x �) and rh(x �) point in opposite directions and �� in
ru(x �) = ��rh(x �) must be negative

x � is an unconstrained maxima so the usual FOC
ru(x �) = 0 apply
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Maths refresh

Lagrangian - Sum up.

MAX
x1;x2

u(x1; x2)

s.t. h(x1; x2) � b

8>>>>>>>><
>>>>>>>>:

@L
@x1 (x

�) = 0
@L
@x2 (x

�) = 0
@L
@�

(x �) = 0

��(h(x1; x2)� b) = 0

�� � 0
where L = u(x1; x2)� �(h(x1; x2)� b)
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Maths refresh

Envelope Theorem. Let u(x ; a) and h(x ; a) be C 1 RnxR! R
functions. Let x �(a) the solution of

MAX
x

u(x )

s.t. h(x ; a) = 0 :

Suppose x �(a) and ��(a) are C 1 functions of a , then

d
da

u(x �(a); a) =
@L
@a

(x �(a); ��(a); a)

where L is the Lagrangian for this problem.
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Maths refresh

Proof.
From the definition of L we get

@L
@a

(x �(a); ��; a) =
@u
@a

(x �(a); a)� �
@h
@a

(x �(a); a) :

Next consider the following

du
da

(x �(a); a) =
nX
i=1

@u
@xi

(x �(a); a)
@xi
@a

+
@u
@a

(x �(a); a) � 1

h(x �(a); a) = 0)
nX
i=1

@h
@xi

(x �(a); a)
@xi
@a

+
@h
@a

(x �(a); a) = 0

@u
@xi

(x �(a); a) = �
@h
@xi

(x �(a); a) FOC of the Max problem
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Maths refresh

Proof. - Cont’ed.
Substituting the last two conditions in the definition of du=da
we get

du
da

(x �(a); a) = �
@h
@a

(x �(a); a) +
@u
@a

(x �(a); a)| {z } :

@L
@a

(x �(a); ��(a); a)

�
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At the most abstract level we view the consumer as having

1. consumption set Rn
+

2. preference relation � defined on Rn
+

3. circumstances (income and prices) that limit the
alternatives the consumer is able to achieve thus defining a
feasible set B � Rn

+

4. motivation to obtain the most preferred alternative
according to his preferences

Assumption.
The consumer’s preference relation � is complete, transitive,
continuous, strictly monotonic and strictly convex in Rn

+.
Therefore � can be represented by a real valued utility
function, u(x ), that is continuous, strictly increasing and
strictly quasiconcave on Rn

+.
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Budget set
Our consumer operates in a market economy:
1. there are pi 8i
2. agents cannot influence prices
3. agents are endowed with an income y > 0

Budget set: B = fx jx 2 Rn
+; p � x � yg

x1

x2

�
p1
p2

B
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Consumer problem: mathematical structure

MAX
x

u(x )

s.t. p � x � y � 0

u(x ) is a continuous real valued function

B is a non empty, closed, bounded (thus compact) subset
of Rn

u(x ) is quasiconcave and B is convex ) there exists a
unique max (Weierstrass’s Theorem)

preference are strictly monotonic ) x � satisfies the budget
constraint with equality
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Consumer problem: mathematical structure

MAX
x

u(x )

s.t. p � x � y � 0

x1

x2

�
p1
p2

y=p1

y=p2

X�(p; y)
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Marshallian demand function

The unique solution to the CP(Consumer Problem) depends on
p and y ; hence x � can be viewed as a function of these
parameters

x � = x (p; y) Marshallian demand
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Marshallian demand function

x1

x2

x1y=p1

X �(p0; y)

y=p2

p0

p

p1

�
p1
p2 �

p01
p2

X �(p; y)

MARSHALLIAN
DEMAND

y=p01
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CP with differentiable utility

MAX
x

u(x )

s.t. p � x � y � 0

If u(x ) is differentiable we can define the Lagrangian

L = u(x )� �(px � y)

and set the usual FOC8>>>>><
>>>>>:

@L
@xi

(x �) = @u
@xi
� ��pi = 0 8i

@L
@�

(x �) = px � y = 0

��(px � � y) = 0 [redundant]

�� � 0
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CP with differentiable utility

since ru(x ) > 0 then from the FOC

@u
@xj

(x �) = ��pj 8j

at the equilibrium the marginal utility is proportional to
price for all goods

alternatively,

MRSjk = �
@u=@xj
@u=@xk

= �
pj
pk

8j ; k

the slope of the indifference curve through x � is equal to
the slope of the budget constraint, where MRSjk is the rate
at which xj can be substituted for xk with no change in
consumer’s utility
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CP - Sufficiency condition

In general the FOC are only necessary conditions. In this
particular case however

Theorem
If u(x ) is continuous and (quasi)concave on Rn

+ and
(p; y) > 0 then if u(x ) is differentiable at x � and (x �; ��) > 0
solves

@u(x �)
@xi

� ��pi = 0 8i

then x � solves the CP.

To prove this important theorem we need a preliminary result.
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Lemma
Let u(x ) be a C 1 function in R. Then u(x ) is concave in
I � R IFF

u(x 1)� u(x 0) � u 0(x 0)(x 1 � x 0) 8x 1; x 0 2 I

This condition generalizes in

ru(x 0)(x 1 � x 0) � 0 if u(x 1) � u(x 0):

Geometric intuition.
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Proof.
ONLY IF (sufficient condition). If u(x ) is concave then

tu(x 1) + (1� t)u(x 0) � u(tx 1 + (1� t)x 0)

u(x 1)� u(x 0) �
u(tx 1 + x 0 � tx 0)� u(x 0)

t(x 1 � x 0)
(x 1 � x 0)

u(x 1)� u(x 0) � lim
t!0

u(x 0 + t(x 1 � x 0))� u(x 0)

t(x 1 � x 0)
(x 1 � x 0)

u(x 1)� u(x 0) � u 0(x 0)(x 1 � x 0)
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Proof.
IF (necessary condition). If

u(x )� u(y) � u 0(y)(x � y) 8x ; y 2 I then

u(x 1)� u((1� t)x 1 + tx 0) � tu 0((1� t)x 1 + tx 0)(x 1 � x 0) [*]

u(x 0)� u((1� t)x 1 + tx 0) � �(1� t)u 0((1� t)x 1 + tx 0)(x 1 � x 0) [**]

Multiplying [*] and [**] respectively by 1� t and t

(1� t)(u(x 1)� u((1� t)x 1 + tx 0)) � (1� t)t u 0((1� t)x 1 + tx 0)(x 1 � x 0)

t(u(x 0)� u((1� t)x 1 + tx 0)) � �t(1� t) u 0((1� t)x 1 + tx 0)(x 1 � x 0)

summing up the two equations

(1� t)(u(x 1)) + t(u(x 0))� u((1� t)x 1 + tx 0) � 0

(1� t)(u(x 1)) + t(u(x 0)) � u((1� t)x 1 + tx 0)
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Proof of the sufficiency theorem.
Let’s prove the statement by contradiction. Assume x � such
that ru(x �) = ��p and with px = y exists. If it is not the
solution of the CP then, 8t 2 [0; 1] it must exist an x 0 such that8<
:u(x

0) > u(x �)

px 0 � y � 0

=)

continuity of u(x )
8<
:u(tx

0) > u(x �)

p(tx 0)� y < 0
Setting x 1 = tx 0 one gets

ru(x �)(x 1 � x �) = ��p(x 1 � x �)

= ��(px 1 � px �)

< ��(y � y) = 0

which, by the previous Lemma, is in contradiction with the
assumption of concavity of u(x ).

�
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Indirect utility function

The value of u(x �) reached in the solution of the CP depends
on the level of prices p and on the consumer’s income y . The
relations among p, y and u(x �) can be summarized by

v : Rn
+ � R+ ! R v(p; y) = Max

x2Rn
+

u(x ) s.t. px � y � 0 :

v(p; y) is called indirect utility function and under usual
regularity conditions

v(p; y) = u(xm(p; y)) ;

where xm(p; y) is a well defined Marshallian demand function.

104 / 173



Theorem (Properties of v(p; y))
If u(x ) is continuous, strictly increasing and differentiable
and (p; y) > 0 the the associated v(p; y) is

1. continuous on Rn
+ � R+

2. homogeneous of degree 0 in (p; y)

3. strictly increasing in y

4. decreasing in p

5. Roy’s Identity:

xi (p0; y0) = �
@v(p0; y0)=@pi
@v(p0; y0)=@y
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Proof (sketch).
1. Theorem of the maximum states (approximately) that if u(x )
and the constraints in the CP are continuous in the parameters
and their domain is compact then v(p; y) is continuous

2. Homogeneity of degree 0 means v(p; y) = v(tp; ty) 8t > 0.
Easy: does the budget constraint vary?

3. From the Envelope theorem

dv(y ; p)
dy

=
@L(p; y ; �)

@y
= � > 0

4. Similarly

dv(y ; p)
dpi

=
@L(p; y ; �)

@pi
= ��xi < 0

5. From 3. and 4. we get directly Roy’s Identity.

�
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Expenditure function

The expenditure function originates fixing the prices of goods
and asking at those prices what’s the minimum level of money
expenditure the consumer must make to achieve a given level of
utility.
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Expenditure function

u

x1

x2

e2
p2

e�
p2

e1
p2

e1
p1

e2
p1

e�
p1

expenditure = p1x1 + p2x2

x̂
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Expenditure function

The expenditure function e(p;u) is defined as

e : Rn
+ � U ! R+ e(p;u) � Min

x2Rn
+

px s.t. u(x ) � u :
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Remarks on e(p;u)

since px � 0 and p > 0 then the set
fe je = p x for some x with u(x ) � ug is closed and
e(p;u) is the smallest element of the set

if u(x ) is quasiconcave then the “min” is unique and we
can denote the solution to the minimization with a
function x̂ (p;u) � 0 and as before

e(p;u) = p x̂ (p;u)

how can we interpret x̂ (p;u)?
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Hicksian demand function

Consider a standard CP, but fix the utility at level u .

x1

x2

�
p1
p2

y=p1

y=p2
u

xh1 (p; u)

1. The utility level is fixed at u
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Hicksian demand function

Next, imagine to lower p1 and to penalize the consumer
reducing his income exactly of the amount needed to bring the
consumer back to the previous utility level

113 / 173



Hicksian demand function

y=p1

y=p2

x1

x2

y=p01

u

xh1 (p; u)
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Hicksian demand function

x1

x2

y=p2
u

y0=p2

y=p1 y0=p01xh1 (p; u) xh1 (p
0; u)

x h(p0;u) represents the consumption bundle chosen by the
consumer at the new price level p0 after being compensated to
maintain constant his level of utility at u . x h(p;u) are called
Hicksian(compensated) demand functions.
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Expenditure-minimizing choice and Hicksian demand
The solution x̂ (p;u) of the expenditure-minimization problem
is the vector of the Hicksian demands x h(p;u).

u

x1

x2

x�

e�
p1

=
y
p1

e�
p2

=
y
p2

EXPLANATION. Each of the hypothetical(compensated)
budget constraint implies a level of expenditure exactly equal
to minimum level necessary, at given prices, to achieve the
utility level u
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Theorem (Properties of e(p;u))
If u(x ) is continuous and strictly increasing then e(p;u) is

1. 0 when u(x ) takes on the lowest level of utility in U

2. continuous on R+ � U

3. increasing and unbounded in u 8p > 0

4. increasing in p

5. homogeneous of degree 1 in p

6. concave in p

and if u(x ) is strictly quasi-concave

7. Shephard’s Lemma:

@e(p0;u0)

@pi
= x hi (p

0; y0)
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Proof (sketch).
1. Since u(x ) is strictly increasing in x , its lowest value is u(0).
Then px = 0 and consequently e(p;u(0)) = 0.

2. It follows from the theorem of the maximum

3. Let’s consider the Lagrangian L = px � �(�u(x ) + u). If we
assume that the constraint is binding and apply the Envelope
theorem

@L
@xi

= 0 ) pi = ��
@u(x )
@xi

) � < 0

and hence by the Envelop th.
d e(p;u)

du
=

@L
@u

= �� > 0

4. cfr. property 7.
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Proof.(cont’ed).
5. It suffices to show that if x � minimizes the expenditure at
price p it also minimizes the expenditure at price tp. Suppose
not, there exists x 0 such that

tpx 0 < tpx � ) px 0 < px contraddiction!

6. Concavity in p requires

te(p0;u) + (1� t)e(p1;u) � e(tp0 + (1� t)p1;u)

Now consider the following three expenditure minimizing
combinations (p1; x 1), (p2; x 2) and (p3; x 3) where
p3 = tp1 + (1� t)p2. Since x 3 is not necessarily minimizing the
expenditure with p1 and p2 then

e(p3;u) = p3 x 3 = tp11x 3 + (1� t)p2x 3

� te(p1;u) + (1� t)e(p2;u)
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Proof.(cont’ed).
7. By the Envelope theorem

d e(p;u)
dpi

=
@L
@pi

= x �i � x hi

�
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The relation between v(p; y) and e(p;u)

Fixing p and y we get

u = v(p; y) then by definition e(p; v(p; y)) � y

and analogously fixing p and u

y = e(p;u) then by definition v(p; e(p;u)) � u :

Theorem
Let v(p; y) and e(p;u) be the indirect utility and the
expenditure function for a consumer whose utility u(x ) is
continuous and strictly increasing. Then 8p > 0; 8y � 0
and 8u 2 U

i) e(p; v(p; y)) = y ii) v(p; e(p;u)) = u
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The relation between v(p; y) and e(p;u)

Fixing p and y we get

u = v(p; y) then by definition e(p; v(p; y)) � y

and analogously fixing p and u

y = e(p;u) then by definition v(p; e(p;u)) � u :

Theorem
Let v(p; y) and e(p;u) be the indirect utility and the
expenditure function for a consumer whose utility u(x ) is
continuous and strictly increasing. Then 8p > 0; 8y � 0
and 8u 2 U

i) e(p; v(p; y)) = y ii) v(p; e(p;u)) = u
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Proof.
i) Consider that U = [u(0); �x ] with �x either finite or +1.
Suppose that i) does not hold

e(p; v(p; y)) < y ) e(p;u) < y with u = v(p; y)

[by continuity of] u(x ) e(p;u + �) < y � > 0

[hence there exists] y� : y� = e(p;u + �) < y

[since v(p; y) is increasing in y ] v(p; y) > v(p; y�) � u + �

) u � u + � which contradicts � > 0:

ii) Again by contraddiction. Assume that

v(p; e(p;u)) > u with e(p;u) = y

[since e() is increasing in u] y = e(p;u) > e(p;u(0)) = 0 ) y > 0

[by continuity of v()] 9� > 0 : v(p; y � �) > u ) e(p;u) � y � �

[which together with] e(p;u) = y generate the contradiction
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Duality of demand function

Theorem
Under the usual assumptions, 8p > 0; 8y � 0 and 8u 2 U
we have

i) xi (p; y) = x hi (p; v(p; y))

ii) x hi (p;u) = xi (p; e(p;u)) :

This theorem states that the solution to the “Max u” problem is
also a solution of the “Min px” problem and viceversa.

124 / 173



Proof.
Usual assumption guarantees the existence and uniqueness of
the solution for the two problem ) v(p; y) and e(p;u) are well
defined. Assumes x 0 solves Max u(x ) s :t : px � y � 0, then we
have

x 0 = x (p; y0) u(x 0) = u0

v(p; y0) = u0 px 0 = y0 [by definition of v()]

e(p;u0) = e(p; v(p; y0)) = y0 ; [by the previous theorem]

which states that x 0 is a solution of the Min px st u(x ) � u0

and hence

x 0 = x h(p;u0) = x h(p; v(p; y0))

Analogously for ii).

�
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Income and prices

People do (should) care about real commodities.

RELATIVE PRICE: number of units of some other
commodity that must be foregone to acquire 1 unit of a
given good

pi
pj

=
e=unit i
e=unit j

=
unit j
unit i

relative price of good i

REAL INCOME: maximum number of units of some
commodity the consumer could acquire if he spends his
entire money income

y
pi

=
e

e=unit i
= unit i
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Homogeneity and budget balancedness(BB)

Theorem
Under usual conditions the demand function xi (p; y) 8i is
homogeneous of degree zero in all prices and income and
satisfies the budget balancedness

px (p; y) = y 8(p; y)

Proof.
From the properties of the indirect utility we know

v(p; y) = v(tp; ty), u(x (p; y)) = u(x (tp; ty))

and since the budget sets with (p; y) and (tp; ty) are equal then
both x (p; y) and x (tp; ty) were feasible when the other was
chosen.
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Proof. (cont’ed).
Finally the previous equality and from strict quasi-concavity of
u(x ) we get

x (p; y) = x (tp; ty)

The second part follows directly from the fact that u(x ) is
strictly increasing.

�
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Effects of a price change

What response should we expect in the demanded quantity of a
commodity when its price changes? Suppose we observe a
reduction in the price of x1

131 / 173



Effects of a price change

x1

x2

x01
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Effects of a price change

x1

x2

x01
x11
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Effects of a price change

x1

x2

x01 � x11
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Effects of a price change

x1

x2

x01
x11
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Effects of a price change

Intuitively when a price changes there are two reasons why we
should expects a change in the corresponding demand:

the good whose price declined becomes relatively cheaper
compared to the other good; since they are all desiderable
we expect the consumer to substitute cheaper good with
the more expensive one [SUBSTITUTION EFFECT]

when the price of any good declines the consumer total
command over all goods is increased allowing him to
increase his consumption of all good in the way he sees fit
[INCOME EFFECT]
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Suppose for example to observe a reduction of the price of x1

from p1 to p01
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SE                IE

x1

x1

x1(p1; p2; y)
x h1 (p1; p2; u0)

u0

p1

p01

x2

x2

x1 x0
1 x 01

x1 x0
1 x 01

�p1=p2 � p01=p2 � p01=p2
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Theorem (Slustky equation)
Let x (p; y) be the marshallian demand system of a
consumer. Let u� be the utility level the consumer achieves
at price p and income y. Then

@xi (p; y)
@pj

=
@x hi (p;u

�)

@pj
� xj (p; y)

@xi (p; y)
@y

8i ; j
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Theorem (Slustky equation)
Let x (p; y) be the marshallian demand system of a
consumer. Let u� be the utility level the consumer achieves
at price p and income y. Then

@xi (p; y)
@pj| {z }
TE

=
@x hi (p;u

�)

@pj| {z }
SE

� xj (p; y)
@xi (p; y)

@y| {z }
IE

8i ; j
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Theorem (Slustky equation)
Let x (p; y) be the marshallian demand system of a
consumer. Let u� be the utility level the consumer achieves
at price p and income y. Then

@xi (p; y)
@pj| {z }
TE

=
@x hi (p;u

�)

@pj| {z }
SE

� xj (p; y)
@xi (p; y)

@y| {z }
IE

8i ; j

Proof.
Consider

x hi (p;u
�) = xi (p; e(p;u�))

@x hi (p;u
�)

@pj
=

@xi (p; e(p;u�))
@pj

+
@xi (p; e(p;u�))

@y
@e(p;u�)

@pj
[by total differentiation]
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Proof. (cont’ed).
Now by the Shephard’s Lemma and by considering that
e(p;u�) = e(p; v(p; y)) = y we get

@xi (p; y)
@pj

=
@x hi (p;u

�)

@pj
� xj (p; y)

@xi (p; y)
@y

�

REMARK. Note that the Hicksian demands are unobservable.
What can we know about Hicksian demands if we cannot even
directly see them? Quite a bit.
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Theorem (Negative own-substitution terms)
Let x hi (p;u) be the hiscksian demand for good i. Then

@x hi (p;u)
@pi

� 0 8i

Proof.
From the Shephard’s lemma we have

@e(p;u)
@pi

= x hi (p;u)

@2e(p;u)
@p2

i
=

@x hi (p;u)
@pi

� 0 [since e(p;u) is concave in p]

�

IMPLICATION: Law of Demand for normal good.
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Theorem (Symmetric substitution term)
Let x hi (p;u) be the hiscksian demand for good i. Then

@x hi (p;u)
@pj

=
@x hj (p;u)

@pi
8i ; j

Proof.
From the Shephard’s lemma we have

@e(p;u)
@pi

= x hi (p;u))
@x hi (p;u)

@pj
=

@2e(p;u)
@pjpi

@2e(p;u)
@pjpi

=
@2e(p;u)
@pjpi

[by Young’s theorem]

@x hi (p;u)
@pj

=
@x hj (p;u)

@pi
8i ; j

�
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Theorem (Negative semi-definite substitution matrix)
Let x hi (p;u) be the hiscksian demand for good i and let

�(p;u) �

2
6664

@x h1 (p;u)
@p1

: : :
@x h1 (p;u)

@pn
...

. . .
...

@x hn (p;u)
@p1

: : : @x hn (p;u)
@pn

3
7775

be the sibstitution matrix. Then �(p;u) is negative
semidefinite.

Proof.
For each element of �(p;u) it holds that

@x hi (p;u)
@pj

=
@2e(p;u)
@pjpi

:

The theorem then follows from the concavity of e(p;u).

�
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Theorem (Slutsky matrix)
Let x (p; y) be the marshallian demand system. Define the
Slustky matrix as

2
664

@x1(p;y)
@p1

+ x1(p; y)
@x1(p;y)

@y : : : @x1(p;y)
@pn + x1(p; y)

@x1(p;y)
@y

...
. . .

...
@xn (p;y)

@p1
+ xn(p; y)

@xn (p;y)
@y : : : @xn (p;y)

@pn + xn(p; y)
@xn (p;y)

@y

3
775 :

Then the Slustky matrix s(p; y) is symmetric and negative
semi-definite.

Proof.
Consider the Slustky equation

@x hi (p;u
�)

@pj
=

@xi (p; y)
@pj

+ xj (p; y)
@xi (p; y)

@y

then �(p;u) = s(p; y) and hence s(p; y) is symmetric and
negative semi-definite.

�
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Testing the theory I

If a marshallian demand system is to be viewed as to a
price-taking utility-maximizing consumer then

1. demands must be homogeneous

2. demands must satisfy BB

3. the associated Slutsky matrix must be symmetric and
negative semi-definite

These requirements provide a set of restrictions on allowable
values for the parameters in any empirically estimated
marshallian demand system.
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Elasticities
We define

�i �
@xi (p; y)

@y
y

xi (p; y)
[income elasticity]

�ij �
@xi (p; y)

@pj
pj

xi (p; y)
[cross-price elasticity]

si �
pixi (p; y)

y
si � 0

nX
i=1

si = 1

Theorem
Aggregations The following aggregating relations hold

i)
nX
i=1

�isi = 1 [Engel Aggregation]

ii)
nX
i=1

�ij si = �sj [Cournot Aggregation]
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Proof.
i) Differentiating the BB wrt y

1 =
nX
i=1

pi
@xi (p; y)

@y
=

nX
i=1

pi
xi
y
@xi (p; y)

@y
y
xi

=
nX
i=1

�isi :

ii) Differentiating the BB wrt pj

0 =
X
i 6=j

pi
@xi (p; y)

@pj
+ xj (p; y) + pj

@xj (p; y)
@pj

0 =
nX
i=1

pi
@xi (p; y)

@pj
+ xj (p; y)

nX
i=1

pi
xi
y
@xi (p; y)

@pj
pj
xi

= �xj (p; y)
pj
y

nX
i=1

�ij si = �sj
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Max u(x )
s.t. px � y � 0

x (p; y)

e(p;u)

x h(p;u)

v(p; y)

R
O

Y
’S

ID
E
N

T
IT

Y

x(p; y) = x h (p; v(p; y))

USING INVERSE FUNCTIONS

UMP EMP

DUAL PROBLEMS
S
H

E
P
H

A
R

D
’S

L
E
M

M
A

Min px
s.t. u � u(x) � 0

x h (p; u) = x(p; e(p; y))

SLUTSKY’S EQUATION

RI: xi (p; y) = �
@v(p; y)=@pi
@v(p; y)=@y

SL:
@e(p;u)

@pi
= x hi (p;u)

SE:
@xi (p; y)

@pj
=

@x hi (p;u)
@pj

� xj (p; y)
@xi (p; y)

@y
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Intro

The Theory of Demand has been derived by assuming
consumers have preferences satisfying some axioms and
deducing both demand functions and their properties.

Samuelson(1947): Why not start and finish with observable
behaviors?

INTUITION. If the consumer demands one consumption
bundle instead of another affordable one then we may say that
the first bundle is revealed preferred to the second.
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Weak Axiom of Revealed Preferences - WARP

Definition (WARP)
A consumer’s choice behavior satisfies WARP if 8x 0; x 1 with x 0

chosen at p0 and x 1 chosen at p1

p0x 1 � p0x 0 ) p1x 0 > p1x 1

WARP holds if whenever x 0 is revealed preferred to x 1, x 1 is
never revealed preferred to x 0.
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Weak Axiom of Revealed Preferences - WARP

x2

x1

p1 p0

WARP

x1
x0
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Weak Axiom of Revealed Preferences - WARP

x2

x1

p1 p0

WARP

x0

x1
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Demand function and WARP

Does the Marshallian demand satisfies the WARP?

Under usual assumptions we know that the solution to the UMP
is unique. Suppose that at p0 and p1 our consumer chooses

x 0 and x 1 and that p1x 1 � p0x 0 :

Then since x 1 is affordable and not chosen u(x 0) > u(x 1). At
p1 on the contrary, x 0 is not chosen so it must be p1x 0 > p1x 1.
Hence

p1x 1 � p0x 0 ) p1x 0 > p1x 1 [WARP]
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WARP and the choice function

Assume:

consumer’s behavior satisfies WARP

x (p; y) is his choice function (not a demand function!)

BB: 8p > 0 px (p; y) = y

Under these assumptions the choice function x (p; y) is
homogeneous of degree 0 in (p; y)

160 / 173



Proof.
Suppose at p0 the consumer chooses x 0 and hence p0x 0 = y0.
Analogously at p1 he chooses x 1 and hence p1x 1 = y1. Assume
p1 = tp0 and consequently y1 = ty0. From BB it follows that

p1x 1 = p0x 0 )

8<
:tp

0x 1 = tp0x 0

p1x 1 = p1x 0
)

8<
:p

0x 1 = p0x 0

p1x 1 = p1x 0
:

IF x 0 6= x 1 then WARP implies p1x 1 < p1x 0, contraddiction.
Hence, it must be x 1 = x 0 but this means that x (p; y) is
homogeneous of degree zero.

�
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Slutsky compensated demand

The Slutsky compensation when prices vary arbitrarily is
obtained by changing the income so that the consumer can just
afford the initial bundle.
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Slutsky compensated demand

x2

x1

x0
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Slutsky compensated demand

x2

x1

x0
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Slutsky compensated demand

The Slutsky compensation when prices vary arbitrarily is
obtained by changing the income so that the consumer can just
afford the initial bundle.

Consequently, under these circumstances, at price p the
consumer’s income will be px 0 and his the function, describing
his choice behavior, x (p; px 0),

Under these assumptions the Slutsky matrix associated with
the choice function x (p; y) is negative semidefinite.
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Proof.
Consider the following situation

p0 > 0 y0 > 0 p0 > 0 y0 > 0

x 0 = x (p0; p0x 0) x 1 = x (p1; p1x 0)

[WARP][*] p0x 0 � p0x 1 since

8<
:x

0 = x 1 ) p0x 0 = p0x 1

x 0 6= x 1 ) p0x 0 < p0x 1

[BB][*] p1x 0 = p1x (p1; p1x 0)

[*]� [**] (p1x 0 � p0x 0) � p1x (p1; p1x 0)� p0x 1

(p1 � p0)x 0 � (p1 � p0)x (p1; p1x 0) 8p1

166 / 173



Proof. (Cont’ed).
Since the last holds 8p1, it holds also for p1 = p0 + tz 8t > 0
and 8x 2 Rn(negative and positive). This implies

(p0 + tz � p0)x 0 � (p0 + tz � p0)x (p0 + tz ; (p0 + tz )x 0)

zx 0 � zx (p0 + tz ; (p0 + tz )x 0) :

Since p0 > 0, for fixed z we may choose �t > 0 small enough so
that p0 + tz > 0 8t 2 [0;�t). Then

IF t = 0 ) zx 0 = zx (p0; p0x 0)

THEN f (t) � zx (p0 + tz ; (p0 + tz )x 0)

is maximized on [0;�t) at t = 0 and hence f 0(t)jt=0 � 0. Let’s
take the derivative of f (t).
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Two goods example

f (t) � zx (p0 + tz; (p0 + tz)x0)

df (t)
dt

= z1
�
@x1

@p1

dp1

dt
+

@x1

@p2

dp2

dt
+

@x1

@y
dy
dt

�
+�

@x2

@p1

dp1

dt
+

@x2

@p2

dp2

dt
+

@x2

@y
dy
dt

�
df (t)
dt

= z1
�
@x1

@p1
z1 +

@x1

@p2
z2 +

@x1

@y
(z1x1 + z2x2)

�
+�

@x2

@p1
z1 +

@x2

@p2
z2 +

@x2

@y
(z1x1 + z2x2)

�

= z1

2
4 2X
j=1

@x1

@pj
zj +

@x1

@y
zj xj

3
5+ z2

2
4 2X
j=1

@x2

@pj
zj +

@x2

@y
zj xj

3
5

=
2X

i=1

zi
2X

j=1

@xi
@pj

zj +
@xi
@y

xj zj :
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Proof. (Cont’ed).
Hence in the n-goods case

df (t)
dt

=
nX
i=1

zi
nX

j=1

@xi
@pj

zj +
@xi
@y

xj zj � 0 :

Since z 2 Rn is arbitrary this means the matrix whose ij
element is

@xi
@pj

+
@xi
@y

xj

is negative semidefinite. But this matrix is precisely the Slutsky
matrix associated with the choice function x (p; y).

�
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We have just proven the following

Theorem
If a choice function x (p; y) satisfies WARP and BB the it is
homogeneous of degree zero in (p; y) and posses a Slustky
matrix negative semidefinite.

What is missing to complete the recovery of a full fledged
demand function? To assure symmetry WARP is not enough.

Definition (SARP)
SARP is satisfied IF, for any sequence of distinct consumption
bundles x 0; x 1; : : : ; x k where x 0 is revealed preferred to x 1, x 1

to x 2 : : : x k�1 to x k , THEN it’s not the case that x k is revealed
preferred to x 0.

170 / 173



171 / 173



Introduction
preferences
utility
choice

Consumer Theory
preference relations
utility function

Quick Maths Refresh

The Consumer Problem
indirect utility function
expenditure function
the Slutsky equation

Revealed Preferences

Uncertainty

172 / 173



173 / 173


	Introduction
	preferences
	utility
	choice

	Consumer Theory
	preference relations
	utility function

	Quick Maths Refresh
	The Consumer Problem
	indirect utility function
	expenditure function
	the Slutsky equation

	Revealed Preferences
	Uncertainty

