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Review of Statistics

What is Statistics?
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Do mean earnings differ from men and women, and if so, by
how much?

One way to answer this question would be to perform an
exhaustive survey of the population measuring the earnings
of each worker. And, next comparing the mean, for
example.
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Review of Statistics

The key insight of statistics is that one can learn about
the population distribution of earnings simply by
selecting a random sample rather than survey the entire
population.

This is called “to draw statistical inferences about the
population”.
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Section 1

Estimation
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Estimators

Assume that:

- Y is a random variable whose unknown mean and variance
are µY and σ2Y;

- unfortunately you do not have access to the entire
population but only to a random sample of n i.i.d
observations Y1, . . . , Yn drawn from it.

How do you exploit the information contained in the sample
to guess the true unknown value of µY?
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Estimators

- A first “natural” way to answer this question would be
to compute the sample average Y.

- This is not the only way. One could simply using the
first observation Y1 or the last one Yn.
Alternatively one could take central one Y n+1

2
.

- In principle any function of the n components can be
use to guess the true value of µY.

An estimator is a function of Y1, . . . , Yn representing a
random drawn from a population.
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Terminology

To avoid confusion keep in mind that

- because of the randomness in selecting the sample an
estimator is a random variable (with its proper
distribution, mean, variance etc. . .).

- an estimate is the numerical value of the estimator
when it is actually computed using data from a
realized sample. An estimate is a nonrandom number.
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Properties of an estimator

Since there are many possible estimators for an unknown
µY, how can we choose among them which are to be
considered “good” or “better”?

In general we would like

- an estimator to get as close as possible to the
unknown true value, at least in some average sense;

- the sampling distribution of an estimator to be as
tightly centered on the unknown value as possible.
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Properties of an estimator

Suppose you evaluate an estimator many times over
different random samples:
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It is reasonable to hope that, in expected value, you
would get the correct value.

Unbiasedness. Let µ̂Y be an estimator for µY, then µ̂Y is
unbiased if

E(µ̂Y) = µY ,

where E(µ̂Y) is the mean of the sampling distribution of
µ̂Y.

example. The sample average is an unbiased estimator of
µY if the sample is random.
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It is desirable that when the sample size is large the
uncertainty about the value of µY arising from random
variations in the sample becomes very small. Formally,

Consistency. Let µ̂Y be an estimator for µY, then µ̂Y is
consistent for µY if when n→∞

µ̂Y
p−→ µY ,

where
p−→ means converge in probability.

example. The sample average is a consistent estimator of
µY if the sample is random.
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Among unbiased estimators it is reasonable to pick the
estimator with the tightest sampling distribution.

Efficiency. If µ̂Y and
_
µY are two unbiased estimators for

µY, then µ̂Y is said to be more efficient than
_
µY if

var(µ̂Y) < var(
_
µY) .

17 / 83



Among unbiased estimators it is reasonable to pick the
estimator with the tightest sampling distribution.

Efficiency. If µ̂Y and
_
µY are two unbiased estimators for

µY, then µ̂Y is said to be more efficient than
_
µY if

var(µ̂Y) < var(
_
µY) .

18 / 83



Example. Assume Y is a random variable normally
distributed with the mean equal to µY and the variance to
σ2Y. We consider in turn two different estimators for µY

- Y, which we know is unbiased and consistent for µY;

- Y +
1
n
.

First,

- E[Y +
1
n
] = µY +

1
n
, showing that this estimator is biased;

1
n

represents the bias;

- when n grows larger Y +
1
n

tends to µY since Y tends to

µY for the lln while
1
n

to 0.

Second, VAR[Y]=VAR[Y +
1
n
]=
σ2

n
.
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Exercise 1. Let Y be a rv with mean µY and variance σ2Y.
Consider an iid random sample Y1, Y2, . . . , Yn.
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Exercise 1. Let Y be a rv with mean µY and variance σ2Y.
Consider an iid random sample Y1, Y2, . . . , Yn. Prove that as
an estimator of µY the sample average Y is

- the most efficient among those that are weighted
averages of Y1, . . . , Yn. [To see the intuition compare Y, Y1
and ˆ̂Y = 1

n(
1
2Y1 +

3
2Y2 + . . . + 1

2Yn–1 +
3
2Yn)]

- the least squares estimator for µY.
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Estimator for µY

To estimate µY we use Y since it is the Best Linear
Unbiased Estimator for µY. It is a BLUE estimator.
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Estimator for µY

To estimate µY we use Y since it is the Best Linear
Unbiased Estimator for µY. It is a BLUE estimator.

Remark. Remember that everything holds only in case of
random samples. For nonrandom samples Y is typically
biased.
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Estimator for σ2
Y

Let Y be a rv with mean µY and variance σ2Y. Show that the
sample variance

s2Y =
1
n

∑
i
(Yi – Y)2 .

is a biased estimator for σ2Y and propose an unbiased
alternative.
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Estimator for σ2
Y

The corrected sample variance s2Y, defined as

s2Y =
1

n – 1

∑
i
(Yi – Y)2

is an unbiased and consistent estimator of the population
variance σ2Y. Note:

- the population mean µY is replaced by the sample mean
Y.

- instead of n we divide by (n-1). This is due to the
fact that using Y instead of µY introduces a small
downward bias in (Yi – Y)2 that is corrected by dividing
by n-1.
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Estimator for σ2
Y

Remark. Dividing by (n-1) is called a degrees of freedom
correction: estimating the mean uses up 1 degree of
freedom of the data (part of the info contained in the
sample) and only n-1 are left.
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The standard error of Y

Since

- the standard deviation of the sampling distribution of
Y is σY = σY/

√
n;

- s2Y
p−→ σ2Y (consistency) ,

then one is justified using sY/
√
n as an estimator of σY.

sY/
√
n is called the standard error of Y and is denoted

SE(Y) or σ̂Y.
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Exercise 2. Consider two rv X and Y with means and
variance µX, σX and µY, σY respectively. Let σXY denote
the covariance between X and Y. Show that the sample
covariance

sXY =
1

n – 1

∑
(Xi – X)(Yi – Y) ,

is an unbiased estimator for σXY.
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Estimator for σXY

The corrected sample covariance SXY

sXY =
1

n – 1

∑
(Xi – X)(Yi – Y) ,

is an unbiased and consistent estimator for σXY.
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Section 2

Parametric Testing
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Introduction and terminology

Statistical testing provides a formal framework in which a
researcher can try to answer a yes/no question based on a
random sample of data. The two main building blocks of a
statistical test are:

- null hypothesis H0, the hypothesis to be tested;

- alternative hypothesis H1, the hypothesis against
which H0 is tested.
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Introduction and terminology

H0 is True H0 is False

Reject H0 Error type I Correct inference
(False positive) (True positive)

Fail to Reject H0 Correct inference Error type II
(True negative) (False negative)

Size of the test is the probability of incorrectly
rejecting H0 when H0 is true, that is the probability
to make a type I error.

Power of the test is the probability of correctly
rejecting H0 when H0 is false.
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Subsection 1

Hypothesis tests concerning the population mean
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The null hypothesis H0 is that the population mean
E(Y) = µY takes on a specific value denoted µ0

H0 : E(Y) = µ0 .

The alternative hypothesis H1 specifies what is true if
the null hypothesis is not.

- The most general alternative hypothesis is

H1 : E(Y) 6= µ0 ,

known as the two-sided alternative hypothesis because it allows E(Y) to be
either less or greater than µ0;

- other specifications of the alternative hypothesis are, for example,

H1 : E(Y) ≥ µ0 or H1 : E(Y) ≤ µ0

known as the one-sided alternative hypothesis.
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The problem we face is to use the information contained in
a random sample to decide if we

- reject H0

- fail to reject H0 since we do not have enough evidence
against it. This is 6= from accepting H0.
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- In any give sample Y1, . . . , Yn the sample average Y is
in general different from the hypothesized value µ0.
This is caused by either the following two reasons:

- the true µY 6= µ0 (H0 is false);
- because of the random sampling.

- Sadly it is impossible to distinguish between these
two possibilities with certainty.

However it is possible to do a probabilistic calculation that permits testing

H0 in a way that accounts for sampling uncertainty.

- This calculation involves using the data to compute
the p-value associated with H0.
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p-value (intuition)

Let’s consider a random sample of students drawn from this
class.The average age Y of the sample is 23.4 Assume that
the null hypothesis we would like to test is H0 : E(Y) = 22.

The p-value associated with H0 is the probability of
drawing a value of Y at least as different from 22 as the
observed value of 23.4 by pure random sampling variation
and assuming that H0 is true.
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p-value (intuition)

If the probability of drawing a value of Y at least as
different from 22 as the observed value of 23.4 by pure
random sampling variation (namely the p-value)

- is large, say 0.5, it means that under H0 is would be
likely to draw 23.4;

- is small, say 0.05, it means that under H0 is would be
very unlikely to draw 23.4;
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p-value (intuition)

If the probability of drawing a value of Y at least as
different from 22 as the observed value of 23.4 by pure
random sampling variation (namely the p-value)

- is large, say 0.5, it means that under H0 is would be
likely to draw 23.4; [UNREASONABLE to REJECT H0];

- is small, say 0.05, it means that under H0 is would be
very unlikely to draw 23.4; [REASONABLE to REJECT H0].
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p-value (definition)

Let

- Yact be the value of the sample average actually
computed with the sample at hand

- PrH0 be the probability computed under the null
hypothesis (that is computed assuming that E(Yi) = µ0).

p-Value. The p-value is defined as

p – value = PrH0
[
|Y – µ0| > |Yact – µ0|

]
.
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p-value (definition)

Let

- Yact be the value of the sample average actually
computed with the sample at hand

- PrH0 be the probability computed under the null
hypothesis (that is computed assuming that E(Yi) = µ0).

p-Value. The p-value is defined as

p – value = PrH0
[
|Y – µ0| > |Yact – µ0|

]
.

Remark. For continuous rv this probability is the area in the tails of the
distribution, under the null hypothesis, of Y beyond µ0 ± |Yact – µ0|.

Remark. Hence to calculate the p-value we need to know what is the distribution

of Y under the null hypothesis H0. Since you master the CLT, this is not a

problem anymore at least when n is large.
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p-value (computation when σ2
Y is known)

When n is large, under the null hypothesis H0 : E(Y) = µ0

Y d−→ N(µ0,
σ2Y
n
) ,

where σ2Y =
σ2Y
n

is known by assumption. Then,

Y – µ0√
σ2Y
n

d−→ N(0, 1) .

So the p-value is equivalent to the probability of
obtaining (Y – µ0)/σY greater than (Yact – µ0)/σY in absolute
value.

48 / 83



–

∣∣∣∣∣Yact – µ0σ

∣∣∣∣∣ 0

∣∣∣∣∣Yact – µ0σ

∣∣∣∣∣
49 / 83



p-value (computation when σ2
Y is unknown)

When σ2Y is unknown the procedure remains essentially the
same. We just need to replace σ2Y with its consistent
estimator s2Y. In this case, again for the CLT,

Y – µ0√
s2Y
n

=
Y – µ0
SE(Y)

d−→ N(0, 1) ,

where (Y – µ0)/SE(Y) has a special name, the t-statistics
or t-ratio.
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Test procedure

In both cases the procedure to test H0 : µY = µ0 against
H1 : µY 6= µ0 is the same. It consists in three steps:

- based on your sample and under H0 compute the t-ratio

tact =
Yact – µ0
SE(Y)

;

- obtain the corresponding p-value using

p – value = PrH0
[
|t| > |tact|

]
,

where, for the CLT, t is distributed according to
N(0,1);

- decide if the p-value is sufficiently small to reject
H0.
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Practice

Exercise 4. Consider a random sample drawn from a Normal
distribution with unknown mean µx and variance 1. The
sample average X̄ is found to be 5.4.

- Assume n=10 and compute the p-value associated with
the test of H0 : µx = 5 versus H1 : µx 6= 5.

- Repeat the exercise for n=100, n=5. Comment.

- Assume n=100 and X̄ = 7.5 and compute the p-value
associated with the test of H0 : µx = 5 versus
H1 : µx 6= 5.

- Assume n=10 and X̄ = 5.4 and compute the p-value
associated with the test of H0 : µx = 5 versus
H1 : µx < 5.
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Subsection 2

Hypothesis test with a pre-specified significance level
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Typically we give a preferential treatment to the null
hypothesis H0 (Ex. with the legal system). In this case

- type I error: H0 is true but you reject it (False
Positive)

is the most dangerous.

For this reason often we set in advance the probability of
making the type I error.

This probability is called significance level of the test. With a pre-specified

significance level, testing H0 does not require to explicitly calculate the

p-value.
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Test procedure

- set the significance level, say 5%;

- obtain from the statistical table the corresponding
critical value;
it is the value for which the area under the tails (left and right) is

exactly 5%; in case of a significance level of 5% is |1.96|. [visualization]

- compute the actual value of the t statistics

tact =
Yact – µ0
SE(Y)

,

based on the available sample;

- apply the rule

Reject H0 if |tact| > 1.96 .
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Confidence intervals (definition)

The rejection rule in a test with 5% significance level
reads

Reject H0 if |t| > t5% .

This implies that the set of values associated with
non-rejection at the 5% level can be written as

–t5% <
Y – µY
SE(Y)

< t5% .

As a consequence

Y – SE(Y)t5% < µY < Y + SE(Y)t5% .

The last interval represents a 95% confidence interval for
the population mean.
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Confidence intervals (interpretation)

The correct interpretation of a confidence interval is

- before the sample is drawn, the random interval has a
95% chance of containing the true µY;

- after the sample is drawn either the unknown parameter
lies in the interval or it does not! For 95% of
random samples, it does.
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Subsection 3

testing the difference between population means
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To illustrate this testing procedure:

- let µW be the mean of YW, a rv representing the hourly
earnings of a group of women recently graduated;

- let µM be the mean of YM, a rv representing the hourly
earnings of a group of men recently graduated;

- assume that you have one sample of nM men and an
independent sample with nW women.

We aim at testing the null hypothesis H0 : µM – µW = 0
against H1 : µM – µW 6= 0.
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Comparing means from different populations

Since YM and YW are constructed from different random
samples, they are independent. Then, when nm and nw are
large, invoking the CLT gives

YM – YW
d−→ N(µM – µW,

σ2M
nM

+
σ2W
nW

) .

When σ2M and σ2W are unknown we can compute the t-ratio for
this test as

t =
Ym – Yw – d0
SE(Ym – Yw)

d−→ N(0, 1) ,

where SE(Ym – Yw) =

√
s2m
nm

+
s2w
nw

and follow the usual procedure.

62 / 83



Exercise 5. Data on fifth grade (math and reading) score
for 420 school districts in California yield Ȳ = 646.2 and
SY = 19.5.

- Build a confidence interval at 95% level for the
unknown µY.

- When districts are divided into districts with large
classes (more than 20 students) and districts with
small classes (less than 20 students) we get

Ȳ SY n
small 657.4 19.4 238
large 650 17.9 182

Is there statistically significant evidence that
districts with smaller classes have higher average
test score?
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Subsection 4

why t-ratio?
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- If n is large then the CLT implies that

t-ratio =
Y – µ0√

s2Y
n

=
Y – µ0
SE(Y)

d−→ N(0, 1) ,

- If n is small we do not know the distribution of the
t-ratio. However if we are willing to assume that Y
is Normally distributed then

t-ratio =
Y – µ0√

s2Y
n

=
Y – µ0
SE(Y)

∼ Student′s t(n–1) .
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- If n is large then the CLT implies that

t-ratio =
Y – µ0√
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- If n is small we do not know the distribution of the
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Section 3

Distribution Free Testing
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Distribution free testing

- Usually we test statistical hypothesis with respect to
a random variable Y whose probability distribution
p(Y) is known.

- In many situation, however, we do not know p(Y) but we
need to do inference on the phenomenon summarized by
Y.

- Nonparametric testing procedures fill this gap
imposing only two requirements

1. the phenomenon of interest must be described as a
continuous random variable Y;

2. the realizations of Y must be replaceable with the
corresponding rank, i.e. with natural numbers 1, . . . , n
once they have been ordered.
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Distribution free test

Let’s set the stage.

- Let’s consider
(Y1, . . . , Yn), a sample of n i.i.d. observations;
(R1, . . . , Rn), the corresponding ranks .

- As usual, behind a specific random sample and its
ranks there are two random variables Y and R.

- In particular R is known as the random variable Rank.
Note that even if Y1, . . . , Yn are i.i.d. R1, . . . , Rn are
not independent since

n∑
i=1

ri =
n(n + 1)

2
.
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Sign Test - Fisher

Let θY be the unknown [median] of a continuous rv Y and
(Y1, . . . , Yn) a random sample drawn from the population with
the aim of testing H0 : θY = θ0 against H1 : θY 6= θ0.

Under the null hypothesis H0 : θY = θ0
- Pr(Y < θ0) = P(Y > θ0) = 0.5 implying that
Pr(Yi < θ0) = Pr(Yi > θ0) = 0.5 i = 1, . . . , n and
Pr(Di < 0) = Pr(Di > 0) = 0.5 i = 1, . . . , n, where Di = Xi – θ0

- we can define

s(di) =

{
1 di > 0
0 di < 0

,

and the associated rv S =
∑

i s(di).
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Sign Test - Fisher

The intuition behind the test is very simple:

- under H0, Sact should not be too far away from the mean
of the (so far unknown) distribution of S.

- Then the test procedure is standard and depends on the
specification of the alternative hypothesis H1, if it
is one-sided or two-sided.

Problem. It remains to establish what is the distribution
of S. Does it require to specify a distribution for Y? Or
is it free from the distribution of Y?
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Sign Test - Fisher

Under H0 the distribution of S is given by

P(S = 0) = Pr

[∑
i

s(Di) = 0

]
= 0.5n

P(S = n) = Pr

[∑
i

s(Di) = n

]
= 0.5n

P(S = s) =
(
n
s

)
0.5n

that is S is a Binomial rv with parameters (n, 0.5) and so
it is free from the distribution of X.

Remark. If the median of Y is not θ0 but another value θ1
then it is not possible to evaluate P[(X – θ0) > 0] and the
distribution free property disappears.
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Signed Rank Test - Wilcoxon

Procedure to test H0 : θ = θ0, that is the median of a
symmetric continuous rv X is equal to θ0. Let

(x1, . . . , xn) [sample of n independent Bernoulli trials]

(d1, . . . , dn) [di = xi – θ0]

(|d1|, . . . , |dn|) [absolute values of di]

(r1, . . . , rn) [ranks of |di| ] ,

the Wilcoxon test statistics reads

t =
n∑
i=1

ris(di) ,

where s(di) = 1 if di > 0 and s(di) = 0 if di < 0.
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Practice

Exercise 6. Consider the following random sample with
n=4: x1 = 9, x2 = 0, x3 = –3 and x4 = 3. Assume θ0 = 5.
Compute the Wilcoxon test statistics for this sample.
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Distribution of the Wilcoxon statistics

The distribution of T is in general unknown. But,
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Distribution of the Wilcoxon statistics
Consider a small sample composed by 3 observations
(x1, x2, x3). Then all the possible combinations of the
s(di) values with the corresponding t can be summarized as
follows

Ranks t
1 2 3
1 1 1 (1+2+3)=6
0 1 1 (2+3)=5
1 0 1 (1+3)=4
1 1 0 (1+2)=3
0 0 1 (3)=3
0 1 0 (2)=2
1 0 0 (1)=1
0 0 0 0(0)=0

Then the distribution of T is

t 0 1 2 3 4 5 6

P(T=t) 1
8

1
8

1
8

2
8

1
8

1
8

1
8
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Signed Rank Test - Wilcoxon

In general,

- T assumes values in the range [0, n(n+1)
2 ];

- T is symmetric around its mean and it is free from the
distribution of X;

- E[T] =
n∑
i=1

riE[s(di)] =
n∑
i=1

ri(112 + 012) = n(n+1)
4

- Var[T] =
n∑
i=1

r2iVar[s(di)] =
n∑
i=1

r2i(
1
2 – 1

4) = n(n+1)(2n+1)
24

The intuition behind this test is simple: under H0 t
should be close to E[T] the mean of T which under symmetry
is also the median. The test procedure is then standard.
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Hyper-references
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-1.96 0 1.96

The sum of the two shaded areas is equal to 0.05

Standardized Normal Density

[back]
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Why the median of Y and not the mean?

Because when the distribution of Y is unknown it is always
possible to assign the probability to the event Y – θ>0,
that is by definition 0.5.

This is not the case for the event Y – µY, except when Y is
symmetric.

[back]
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