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Instructors

- Angelo Secchi

- angelo.secchi@univ-paris1.fr
- in case you need to talk with me, drop an email to make
an appointment.

- Room R4-70, 4th floor. Paris School of Economics, 48
Boulevard Jourdan, 75014.

- Nina Rapoport

- nina.rapoportpsemail.eu
- tbc
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Instructors

- Angelo Secchi, will get you lost;

- Nina Rapoport, will come to rescue you.
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Organization

- Syllabus [here]

- Slides available on my personal page [here]

- warnings on slides: howto use them, handle them with
care, first draft

- Exams (boot camp + Introduction to Econometrics):
- Mid-term (70%bc + 35%imetrics): Thursday Nov 5, 09h30.
(Room, TBC)

- Take home (30%bc + 15%imetrics): deadline Dec 17, after
class.

- Final (50%imetrics): TBC. (Room, TBC)
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http://www.parisschoolofeconomics.com/secchi-angelo/courses/files/statistics_review.pdf
http://cafim.sssup.it/~angelo/courses/statistics_review.html


Organization

- (Hopefully useless) remarks:

- Exams will not be rescheduled. No exceptions.

- In case of exceptional events contact, as soon as
possible, the Director of the Master.

- Be on time.

- Class is a mobile-free zone.

- Typical students attitude:

- Psycho: “I do not understand a single word; no problem
I will catch-up later on during the semester”;

- Econ: “I already know Econometrics; no need to properly
follow classes and to work hard”.
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Organization
- (Hopefully useless) remarks:

- Exams will not be rescheduled. No exceptions.

- In case of exceptional events contact, as soon as
possible, the Director of the Master.

- Be on time.

- Class is a mobile-free zone.

- Typical students attitude:
- Psycho: “I do not understand a single word; no problem
I will catch-up later on during the semester”;

- Econ: “I already know Econometrics; no need to properly
follow classes and to work hard”.

Both generate dramatic failures in terms of learning
and grades!

- . . . and yes life is typically unfair. For Psycho
students my classes will be on average harder. But
last 3 years average grades were almost identical.
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R

- R is a statistical programming language:

- it is free and open source, and always will be
- it is a programming language rather than a graphical
interface, it allows scripting

- it has a very active and helpful online community

- R does not have a graphical user interface, RStudio is
a graphical front-end to R

- A simple starting point for newbies:
https://ourcodingclub.github.io/tutorials/intro-to-r/

- A more complete Intro:
https://cran.r-project.org/doc/manuals/r-release/R-intro.pdf
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what would you prefer?

Knowledge, freedom, uncertainty and the brutal
truths of reality

Security, happiness, beauty, and the blissful
ignorance of illusion
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what would you prefer?
Knowledge, freedom, uncertainty and the brutal

truths of reality

Security, happiness, beauty, and the blissful
ignorance of illusion

The Matrix. Directed by The Wachowskis, 1999.
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Section 1

One random variable
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Random variables

Many events have an element of chance or randomness in the
sense that there is something not yet known that is
eventually revealed. For these events:

- the mutually exclusive potential results are called
outcomes;

- the probability of an outcome is the proportion of the
time that the outcome occurs in the long run;

- the set of all possible outcomes is called sample
space;

- an event is a subset of the random space that is a set
of one or more outcomes.
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- “tossing a fair coin”:

1(head) 0(tails) [outcomes]

0.5(head) 0.5(tails) [probability of each outcome]

{1, 0} [sample space]

“not observing 1” [an event]
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- “tossing a fair coin”:

1(head) 0(tails) [outcomes]

0.5(head) 0.5(tails) [probability of each outcome]

{1, 0} [sample space]

“not observing 1” [an event]

- “rolling a fair dice”:

3 2 1 6 4 5 [outcomes]

1/6(3) 1/6(2) 1/6(1) 1/6(6) 1/6(4) 1/6(5)

[probability of each outcome]

{3, 2, 1, 6, 4, 5} [sample space]

“observing ≥ 4” [an event]
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Discrete random variables

We define the discrete random variable X a variable whose
value is determined by the outcome of a chance experiment.

If X represents “tossing a fair coin”, then

1(head) 0(tails) [outcomes]

0.5(head) 0.5(tails) [probability of each outcome]

{1, 0} [sample space]
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Discrete random variables

We define the discrete random variable X a variable whose
value is determined by the outcome of a chance experiment.

If X represents “tossing a fair coin”, then

x1 = 1 x2 = 0 [2 possible outcomes]

Pr(X = x1) = p1 = 0.5 Pr(X = x2) = p2 = 0.5 [probability of each outcome]

{x1, x2} [sample space]

In general a random variable X is described as

x1, x2 . . . , xi, . . . xk [k possible outcomes]

p1, p2 . . . , pi, . . . pk [probability of each outcome]

{x1, x2, . . . , xi, . . . xk} [sample space]

where pi ≥ 0 and
∑k

i=1 pi = 1.
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Probability Distribution Function - PDF
For any discrete random variable X one can define its
probability distribution function, PDF(x) as the list of
all possible values of the variable with the probability
that each value will occur.
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Cumulative Distribution Function - CDF
For any discrete random variable X one can define its
cumulative distribution function, CDF(x), as the
probability that the random variable is less than or equal
to a particular value. Formally, CDF(x)=Pr(X≤x), where

- CDF(x) is obtained by summing the pdf over all values
xi ≤ x;

- CDF(x) is a non-decreasing function of x.
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PDF and CDF of a discrete random variable
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Continuous random variables

For a continuous random variable all the definitions
remain (more or less) the same. However, since a
continuous random variable can take on a continuum of
possible values:

- we cannot list anymore each possible value of the
random variable. Instead we define the probability
density function (PDF);

- the area under the PDF between any two points is the
probability that the random variable falls between
these two points.
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X is the random variable representing “the height (in cm)
of a human being”.
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Examples
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Practice

Exercise 1. Consider the random experiment of tossing
simultaneously two regular coins. First,

- list all the possible outcomes of this experiment.

Assume that all these outcomes have the same probability
of being observed and let Y denote the number of “heads”
obtained. Compute

- the probability distribution function of Y;

- the cumulative distribution function of Y.

- graph the CDF.
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Moments of a distribution

Often we need to synthetically describe the shape of a
PDF.

In order to do that we introduce measures capturing
different aspects of the shape:

- the mean (or expected value) which locates the
distribution;

- the standard deviation (or spread) which measures its
variability;

- the skewness which measures the lack of symmetry of
the distribution;

- the kurtosis which measures how thick, “fat”, or heavy
are its tails. [the likelihood of observing
realizations far away from the mean]
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Mean

The mean of a random variable X, denoted E(X), is the long
run average value of the rv over many repeated trials or
occurrences.
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Mean

The mean of a random variable X, denoted E(X), is the long
run average value of the rv over many repeated trials or
occurrences.

- X represents “tossing a fair coin”:

x1 = 1 x2 = 0 [possible realizations of X, k=2]

p1 = 0.5 p2 = 0.5 [probability of each realization]

E(X) = x1p1 + x2p2 = 1 ∗ 0.5 + 0 ∗ 0.5 = 0.5 .
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Mean

The mean of a random variable X, denoted E(X), is the long
run average value of the rv over many repeated trials or
occurrences.

- Y represents “rolling a fair dice”:

x1 = 3 x2 = 2 x3 = 1 x4 = 6 x5 = 4 x6 = 5

p1 = 1/6 p2 = 1/6 p3 = 1/6 p4 = 1/6 p5 = 1/6 p6 = 1/6

E(X) = x1p1 + x2p2 + x3p3 + x4p4 + x5p5 + x6p6 = 3.5
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Mean

The mean of a random variable X, denoted E(X), is the long
run average value of the rv over many repeated trials or
occurrences.

In general, for a discrete rv the mean is defined as

E(X) = µX =
k∑
i=1

xipi ,

where xi are all the k outcomes of the rv X and pi the
corresponding probabilities.

Remark. The mean is then a weighted average of the
possible realizations of a rv where the weights are the
true probabilities of each realization.
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Mean
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Other location parameters

Often to locate a distribution we also consider

- MEDIAN(X) defined as any real number mX that satisfy

Pr(X ≤ mX) ≥ 0.5 and Pr(X ≥ mX) ≥ 0.5 ;

- MODE(X) as the value of X with the highest probability
of being drawn.

In case of a symmetric uni-modal distribution mean, median
and mode coincide.
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Variance

The variance of a random variable X, denoted var(X) or σ2X,
measures the dispersion or the “spread” of a probability
distribution. For a discrete rv

var(X) =
k∑
i=1

(xi – µx)2pi ,

where xi are the outcomes of the rv, pi the corresponding
probabilities and µX the mean of X.
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Variance

The variance of a random variable X, denoted var(X) or σ2X,
measures the dispersion or the “spread” of a probability
distribution. For a discrete rv

var(X) =
k∑
i=1

(xi – µx)2pi ,

where xi are the outcomes of the rv, pi the corresponding
probabilities and µX the mean of X.

- Y represents “tossing a fair coin”:

x1 = 1 x2 = 0

p1 = 0.5 p2 = 0.5 E(X) = µX = 0.5

var(X) = σ2X = (x1 – µx)2p1 + (x2 – µx)
2p2 = 0.25
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Variance

Two important remarks:

- note that var(X) is by definition equal to E
[
(X – µX)2

]
-
√
var(X)=sd(X)=σX represents the standard deviation of

X.
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Variance
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Skewness

In a symmetric distribution a value of X larger than its
mean of a given amount is just as likely as a value lower
than its mean of the same amount.
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Skewness

The skewness of a random variable X provides a
mathematical way to describe how much a distribution
deviates from symmetry. For a discrete rv

skewness =
∑k

i=1(xi – µx)
3pi

σ3X
.
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Skewness
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Kurtosis

Sometimes we are interested in measuring how likely is to
observe extreme observations in a distribution.
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Kurtosis

The kurtosis of a random variable X provides a
mathematical way to describe how much probability mass is
in the tails of the distribution. For a discrete rv

kurtosis =
∑k

i=1(xi – µx)
4pi

σ4X
.
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Kurtosis
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Practice

Exercise 2. Compute the mean, variance, skewnees and
kurtosis of the distribution of Y of the previous
exercise.
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Functions of a random variable

If X is a random variable with mean and variance µX and σ2X
respectively and Y=a+bX, then

E(X2) = σ2X + µ
2
X

E(Y) = E(a + bX) = a + bµX

var(Y) = var(a + bX) = b2σ2X .
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Practice

Exercise 3. Let X denote the pre-tax earnings of an
household. X is a rv with mean and variance µX and σ2X
respectively. Consider the following tax-scheme:

- household is taxed is 20% rate;

- household is given a tax-free grant of 2000$.

Express the after tax income Y as a function of the
pre-tax income X and compute its mean and variance.
Assume that both X and Y are discrete random variables.
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Section 2

Two random variables
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Most of the interesting questions involve two or more
random variables.

Example. Raising the question

- how does Secchi’s commuting time from home to work
change when it is raining?

concerns the distribution of two random variables
considered together: “commuting time” (rv Y) and “weather
conditions” (rv X).
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Joint distribution

The joint distribution of two discrete random variables,
say X and Y, describes the probability that the two rv
simultaneously take on certain values, say x and y and it
is usually expressed as Pr(X=x,Y=y).
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Joint distribution

Rain (X=0) No rain (X=1)
Long commute (Y=50 min) 0.15 0.07
Short commute (Y=10 min) 0.15 0.63
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Joint distribution

The joint distribution of two discrete random variables,
say X and Y, describes the probability that the two rv
simultaneously take on certain values, say x and y and it
is usually expressed as Pr(X=x,Y=y).

Rain (X=0) No rain (X=1)
Long commute (Y=50 min) 0.15 0.07
Short commute (Y=10 min) 0.15 0.63

Note that the probabilities inside the matrix sum to 1

h∑
j=1

k∑
i=1

Pr(X = xi, Y = yj) = 1 .
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Joint distribution

The joint distribution of two discrete random variables,
say X and Y, describes the probability that the two rv
simultaneously take on certain values, say x and y and it
is usually expressed as Pr(X=x,Y=y).

Rain (X=0) No rain (X=1)
Long commute (Y=50 min) 0.15 0.07
Short commute (Y=10 min) 0.15 0.63

In this example

2∑
j=1

2∑
i=1

Pr(X = xi, Y = yj) = 0.15 + 0.7 + 0.15 + 0.63 = 1 .
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Marginal probability distribution

Using the joint distribution of X and Y one can obtain the
individual distribution of both X and Y. In this context
they are called marginal probability distributions, there
are two of them.

In our example this means obtaining the distribution of
“commuting time”, not considering the effect of weather
conditions, or of “weather conditions”, irrespective of
commuting time.

52 / 150



Marginal probability distribution

Using the joint distribution of X and Y one can obtain the
individual distribution of both X and Y. In this context
they are called marginal probability distributions, there
are two of them.

In our example this means obtaining the distribution of
“commuting time”, not considering the effect of weather
conditions, or of “weather conditions”, irrespective of
commuting time.

53 / 150



Marginal probability distribution

The marginal probability distribution of X and Y are
computed from the joint distribution with

Pr(X = x) =
h∑
j=1

Pr(X = x, Y = yj)

Pr(Y = y) =
k∑
i=1

Pr(X = xi, Y = y).
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Marginal probability distribution

In our example the marginal probability distribution of Y
is computed as

Pr(Y = 50) =
h∑

i=1
Pr(X = xi, Y = 50) = 0.15 + 0.07 = 0.22

Pr(Y = 10) =
k∑

i=1
Pr(X = xi, Y = 10) = 0.15 + 0.63 = 0.78.

and it is typically represented as

Rain (X=0) No rain (X=1) P(Y)
Long commute (Y=50 min) 0.15 0.07 0.22
Short commute (Y=10 min) 0.15 0.63 0.78
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Conditional distribution

Starting from the joint distribution one can also obtain
the distribution of Y conditional on having X equal to a
pre-specified value xi. These distributions are called
conditional probability distributions.

In our example this means obtaining the distribution of
“commuting time” (Y) conditional on fixing the weather
conditions to “rain” (X=0). In this example we have 4
different conditional distributions.
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Conditional distribution

The conditional distribution of Y given X, Pr(Y=y|X=x) are
computed from the joint distribution using

Pr(Y = y|X = x) =
Pr(X = x, Y = y)

Pr(X = x)
.
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Conditional distribution

In our example the probability distribution of Y
conditional on X=0 (when it is raining) is computed as

Pr(Y = 50|X = 0) =
Pr(X = 0, Y = 50)

Pr(X = 0)
=

0.15
0.15 + 0.15

= 0.50

Pr(Y = 10|X = 0) =
Pr(X = 0, Y = 10)

Pr(X = 0)
=

0.15
0.15 + 0.15

= 0.50.

and conditional on X=1 (when it is not raining) as

Pr(Y = 50|X = 1) =
Pr(X = 1, Y = 50)

Pr(X = 1)
=

0.07
0.07 + 0.63

= 0.10

Pr(Y = 10|X = 1) =
Pr(X = 1, Y = 10)

Pr(X = 1)
=

0.63
0.07 + 0.63

= 0.50.
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Conditional expectation

Using the conditional distribution we can define the
conditional expectation of Y given X that is simply the
mean of the conditional distribution of Y given X

E(Y|X = x) =
∑
i

yiPr(Y = yi|X = x) .
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Conditional expectation

What is Secchi’s expected commuting time when it is
raining?

E(Y|X = 0) =
2∑

i=1
yiPr(Y = yi|X = 0) =

= y1Pr(Y = y1|X = 0) + y2Pr(Y = y2|X = 0) =

= 50 ∗ Pr(Y = 50|X = 0) + 10 ∗ Pr(Y = 10|X = 0) =

= 50 ∗ 0.5 + 10 ∗ 0.5 = 30 .
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Conditional expectation

Using the conditional distribution we can define the
conditional expectation of Y given X that is simply the
mean of the conditional distribution of Y given X

E(Y|X = x) =
∑
i

yiPr(Y = yi|X = x) .

Remarks.

- Conditional expectation is a key concept for
regression.

- Similarly one can define conditional variance,
conditional skewness and conditional kurtosis.
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Practice

Exercise 4. Using the commuting time example compute:

- mean of X and Y;

- mean of Y conditional on X=0 and X=1, that is E[Y|X=0]
and E[Y|X=1];

- the weighted mean of E[Y|X=0] and E[Y|X=1], using the
probabilities of X=0 and X=1 respectively.
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Law of iterated expectations

The law of iterated expectations states that the mean of Y
is the weighted average of the conditional expectations of
Y given X, weighted by the probability distribution of X.

Formally,

E(Y) =
∑
i

E(Y|X = xi)Pr(X = xi) = E[E(Y|X)] .
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Law of iterated expectations

Prove the LIE for discrete random variables.
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Law of iterated expectations

Remarks.

- This law implies that if E(Y|X) is equal to 0 then
also E(Y) is equal to 0.

- This law applies also to expectations that are
conditional on multiple random variables:
E(Y)=E[E(Y|X,Z)], E(Y)=E[E(Y|X,Z,R)], . . .
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Statistical independence

When we deal with more than one rv an interesting question
may rise: does knowing the value of some of them provide
information about the others?

In our example: does knowing the weather conditions say
something about the time Secchi will take to reach his
office?

Rain (X=0) No rain (X=1)
Long commute (Y=50 min) 0.15 0.07
Short commute (Y=10 min) 0.15 0.63
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Statistical independence

Two random variables X and Y are independent if knowing
the value of one of the two provides no information about
the other.

Formally, X and Y are independently distributed if, for
all values of x and y

Pr(Y = y|X = x) = Pr(Y = y) .

Equivalently, since Pr(Y = y|X = x) = Pr(X=x,Y=y)
Pr(X=x)

Pr(Y = y, X = x) = Pr(X = x) Pr(Y = y) ,

that is the joint distribution of two independent random
variables is the product of their marginal distributions.
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Covariance and correlation

How do we measure the extent to which two random variables
move together?

The covariance between two random variable is defined as

cov(X, Y) = σXY = E
[
(X – µX)(Y – µY)

]
=

=
∑
i

∑
j
(xi – µX)(yj – µY)Pr(X = xi, Y = yj) ,

and it indeed measures the extent to which X and Y move
together.
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Covariance and correlation

Interpretation. Suppose that when X is greater than its
mean (X-µX>0) then also Y tends to be greater than its
mean (Y-µY>0) and when X is less than its mean (X-µX>0)
also Y tends to be less than its mean(Y-µY>0). In this
case the products of (X-µX) and (Y-µY) will be positive
and the covariance as well.
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Covariance and correlation
To get rid of the problem concerning their units of
measure we define the correlation as

corr(X, Y) =
σXY
σXσY

,

which is a unitless coefficient. Note that,

- –1 ≤ corr(X, Y) ≤ 1
- if X and Y are independent then corr(X,Y)=cov(X,y)=0,
the converse is not necessarily true.

- corr(X,Y) captures only the linear dependence.
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Sums of random variables

Some useful expressions (and exercises for you)

E(a + bX + cY) = a + bµX + cµY ,

var(aX + bY) = a2σ2X + 2abσXY + b
2σ2Y ,

var(Y1 + Y2 + . . . + Yn) =
∑
i

var(Yi) +
∑
i

∑
j6=i

cov(Yi, Yj) ,

cov(a + bX + cR, Y) = bσXY + cσRY ,

|σXY| ≤ σXσY .

76 / 150



Popular distributions in Econometrics
Normal distribution. The PDF of a normally distributed rv
Y with mean µ and variance σ2 looks like
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- What’s the probability of observing a realization of Y lower than µ?

- What’s the probability of observing a realization of Y lower than -1?
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Popular distributions in Econometrics
Normal distribution. The PDF of a normally distributed rv
Y with mean µ and variance σ2 looks like
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- What’s the probability of observing a realization of Y lower than µ? Easy,
the distribution is symmetric.

- What’s the probability of observing a realization of Y lower than -1?
Without a computer less easy but we have the statistical tables.
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This table reports values of the CDF of Z, a standardized normally distributed

random variable. Z is obtained with Z =
Y – µ

σ
and by construction is distributed

according to a Gaussian with 0 mean and variance 1.
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Popular distributions in Econometrics

What’s the probability of observing a realization of a
Normally distributed rv Y (with mean µ and sd σ) lower
than -1? To answer our question we need to follow a
two-step procedure:

1. we need to obtain the standardized value of -1,

Z =
(–1) – µ

σ

2. look for it in the table.

Ex. Assume µ = –2 and σ = 1, then the standardized version

of -1 reads
–1 – (–2)

1
= 1, so the probability of observing a

realization of Y lower than 1 is 0.8413.
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Popular distributions in Econometrics

What’s the probability of observing a realization of a
Normally distributed rv Y (with mean µ and sd σ) lower
than -1? To answer our question we need to follow a
two-step procedure:

1. we need to obtain the standardized value of -1,

Z =
(–1) – µ

σ

2. look for it in the table.

Ex. Assume µ = –2 and σ = 1, then the standardized version

of -1 reads
–1 – (–2)

1
= 1, so the probability of observing a

realization of Y lower than 1 is 0.8413.
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Popular distributions in Econometrics

Chi-squared. If Z1, Z2, Z3, . . . are independent standard
normal random variables then Z21 + Z

2
2 + Z

2
3 + . . . is distributed

according to a Chi-squared with m degrees of freedom,
where m is the number of terms added together.
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Popular distributions in Econometrics
Chi-squared. If Z1, Z2, Z3, . . . are independent standard
normal random variables then Z21 + Z

2
2 + Z

2
3 + . . . is distributed

according to a Chi-squared with m degrees of freedom,
where m is the number of terms added together.
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Popular distributions in Econometrics

Student’s t. If Z is a standard normal random variables
and W an independent Chi-squared random variable with m

degrees of freedom then
Z√
W/m

is distributed according to

a Student t distribution.
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Popular distributions in Econometrics
Student’s t. If Z is a standard normal random variables
and W an independent Chi-squared random variable with m

degrees of freedom then
Z√
W/m

is distributed according to

a Student t distribution.
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Almost all the econometric procedures we will be using
involve averages or weighted averages.
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Almost all the econometric procedures we will be using
involve averages or weighted averages.

Using the textbook wording we distinguish between

- long-run: weights are the true probabilities of each
realization;

- short-run: weights are the observed probabilities of
each realization.

89 / 150



Almost all the econometric procedures we will be using
involve averages or weighted averages.

Using the textbook wording we distinguish between

- long-run: weights are the true probabilities of each
realization; [population mean]

- short-run: weights are the observed probabilities of
each realization. [sample average]
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Almost all the econometric procedures we will be using
involve averages or weighted averages.

Using the textbook wording we distinguish between

- long-run: weights are the true probabilities of each
realization; [population mean]

- short-run: weights are the observed probabilities of
each realization. [sample average]

Characterizing the distributions of sample averages is an
essential step to assess the performance of each
econometric procedures.
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Section 3

Random sampling
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Random sampling

In a simple random sample, n objects are drawn at random
from a population where

- each object has the same probability of being drawn;

- the value of the random variable Y for the ith randomly
drawn object is denoted Yi;

- since each object is equally likely to be drawn and
the distribution of Yi is the same for for all i the
random variables Y1,. . .,Yn are said to be independently
and identically distributed (i.i.d.).

Example. Imagine an urn with 3 balls, one white, one red
and one blue. List different valid random samples with
n=1, n=2 and n=3.
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Distribution of the sample average

The sample average, Y of the n obs Y1,. . .,Yn is

Y =
1
n

n∑
i=1

Yi ,

where because Y1,. . .,Yn are random then also their average
is random. The value of Y differs from one randomly drawn
sample to the other. It is itself a rv.

Since Y is a random variable, it has a probability
distribution, called sampling distribution because it is
the probability distribution associated with the different
values of Y obtained from different random samples.
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Distribution of the sample average

The sample average, Y of the n obs Y1,. . .,Yn is

Y =
1
n

n∑
i=1

Yi ,

where because Y1,. . .,Yn are random then also their average
is random. The value of Y differs from one randomly drawn
sample to the other. It is itself a rv.

Since Y is a random variable, it has a probability
distribution, called sampling distribution because it is
the probability distribution associated with the different
values of Y obtained from different random samples.
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Distribution of the sample average

We start by characterizing the mean and the variance of Y.
Let Y1,. . .,Yn be i.i.d and let µY and σ2Y denote the mean
and the variance common to any Yi. Then

E(Y) = E

(
1
n

∑
i

Yi

)
=
1
n

∑
i

E(Yi) = µY

var(Y) = var

(
1
n

∑
i

Yi

)
=

1
n2
∑
i

var(Yi) =
σ2Y
n

std.dev(Y) =
σY√
n

.

Remarks. This result hold whatever the distribution of
Yi, that is we do not need to assume that Yi is normally
distributed.
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Large samples

There are two ways to characterize the distribution of the
sample average:

- exact: one assumes the distribution of Y and derives
the distribution of Ȳ for any n;

- approximate: one assumes n (sample size) to be large
and approximates the distribution of Ȳ using
statistical tools.

We now discuss two key tools used to approximate sampling
distribution when the sample size is large: the Law of
Large Numbers and the Central Limit Theorem.
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The Law of Large Numbers (LLN)

To get the intuition of the LLN let us consider a rv
“Commuting time” with its distribution:

Table: Marginal distribution of Commuting times

P(Y)
Long commute (Y=50 min) 0.22
Short commute (Y=10 min) 0.78

Draw 1000 random samples with n=2 from the distribution of
Y:

- how many values can Y can take on?

- Is either of them close to the true µY = 18.8?

100 / 150



The Law of Large Numbers (LLN)

10 µ=18.8 30 50

n=2
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The Law of Large Numbers (LLN)

The LLN tells you what happens if you increase n, the
sample size. It states that, under general conditions, Y
will be near to µY with very high probability when n is
large.
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The Law of Large Numbers (LLN)
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The Law of Large Numbers (LLN)

LLN. The LLN says that if Yi (i = 1, . . . , n) are i.i.d. with
E(Y)i = µY and if extreme values are unlikely (technically
if var(Yi) <∞) then Y converges in probability to µY,
that is

Y
p−→ µY .

This means that the probability that Y is in the range
(µY – c,µY + c) becomes arbitrarily close to 1 as n
increases for any c>0.
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The Central Limit Theorem (CLT)

Let’s go back to our example with n=2.

- Can we say something more about the whole shape of the
sampling distribution of Y?

- Does a standardized Normal distribution (with mean 0
and sd 1) fit well the sampling distribution of Y,
once we normalize it as

Z =
Y – µY√

σ2
Y
n

with n = 2, mean µY = 18.8 and variance σ2Y/n = 0.0858 ?
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The Central Limit Theorem (CLT)
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The Central Limit Theorem (CLT)

The CLT states that, under general conditions, the
sampling distribution of Y is well approximated by a
Normal distribution with mean µY and variance σ2Y/n when n
is large.

108 / 150



The Central Limit Theorem (CLT)

In other words the CLT states that, under general

conditions, the sampling distribution of Z =
Y – µY√

σ2
Y
n

is well

approximated by a standardized Normal distribution when n
is large.
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The Central Limit Theorem (CLT)
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The Central Limit Theorem (CLT)

CLT. Suppose that Y1, . . . , Yn are i.i.d. with E(Yi) = µY and
var(Yi) = σ2Y <∞.As n→∞ the distribution of

Y – µY
σY√
n

becomes arbitrarily well approximated by the standard
normal distribution. We write

Y – µY
σY√
n

d−→ N(0, 1) .
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Practice

Exercise 5. Let X be a Bernoulli rv with Pr(X=1)=0.9,
Y∼N(0,4) and W∼N(0,16). Assume that X, Y and W are
independent and let S=XY+(1-X)W. Show that:

- E[Y2]=4 and E[W2]=16;

- E[Y3]=0 and E[W3]=0;

and compute

- E[S], E[S2] and E[S3].
[hint: use the law of iterated expectations]
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Practice

Exercise 6. Suppose Yi, with i = 1, . . . , n, are independent
rv each distributed as N(10,4). Using the CLT compute
Pr(9.6 ≤ Ȳ ≤ 10.4) when n=20, n=100 and n=1000.

Exercise 7. Let Yi, with i = 1, . . . , n, be Bernoulli rv with
Pr(Yi=1)=0.6. compute

- Pr(Ȳ>0.64) when n=50;

- the sample size n such that Pr(0.56 ≤ Ȳ ≤ 0.64)=0.95.
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Section 4

PDF estimate [later in the semester]
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Density estimation

As discussed so far the PDF is a fundamental concept in
statistics. If you have a continous random variable X
with a known PDF p(x) you can build probabilities
associated with X using

Pr(a ≤ X ≤ b) =
∫ b

a
dx p(x) , ∀ a < b .

Now, suppose you do not know the true p(x) but that you
have a set of observed data points assumed to be a sample
from the unknown probability density function p(x).

Is there ways to recover the form of p(x)? This is what
we try to do in the next few slides.
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Density estimation

- Our aim is not to derive the full theory of density
estimation but only to get the main intuition behind
it to be able to correctly understand its strengths
but also its limitations.

- Understanding the intuition is a necessary condition
also to apply correctly the methods in real empirical
investigations.

- Never use a method, technique or statistical tool
without knowing how it works. It is always a source
of problems!
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Density estimation

There are two fundamental approaches to density estimation

- Parametric. One assumes that the data are drawn from
a known parametric family of distributions and then he
estimates the corresponding parameters. Example.

- Non Parametric. One assumes only that the
distribution has a probability density p(x). Then
data will be allowed to speak for themselves in
determining the shape and the properties of p(x).
This is the approach we follow.
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Density estimation

- A very natural use of density estimates is in the
informal investigation of the properties of a given
set of data.

- This kind of descriptive data investigation should
forego any regression analysis.

- Let’s consider an example.
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Hourly wage of a sample of American workers in 1993.
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Hourly wage of a sample of American workers in 1993.
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What can we do with this kernel density estimate?
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In this example, but this is very often the case, the
conclusions could only be regarded as a clue for further
investigations.
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Density estimation

The oldest and most used density estimator is the
histogram, an estimate of the density formed by splitting
the range of a variable X into equally spaced intervals
and calculating the fraction of the sample falling in each
interval.

122 / 150



Density estimation

Practically to build an histogram one has to set:

1. origin: x0
2. bin width: h

3. bins: defined as [x0 + m(2h), x0 + (2h)(m + 1)) where
m = {positive and negative integers}.

Given a sample {xi, i = 1, . . . , n} the histogram f̂(x) is then
defined as

p̂(x) =
1
2h

(
# of xi in the same bin as x

n

)
,

or, if one assumes a varying bin width,

p̂(x) =
1

width of the bin

(
# of xi in the same bin as x

n

)
.

123 / 150



R practitioner corner

In R it is very easy to obtain an histogram of a variable.

> library(foreign)
> ceosal1<-read.dta("
http://fmwww.bc.edu/ec-p/data/wooldridge/ceosal1.dta
> ")
> ROE <- ceosal1$roe
> hist(ROE,xlim=c(0,60))

Histogram of ROE
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Density estimation - Histograms

Why it is ever necessary to use methods more sophisticated
than the simple histogram?

- general reason: very often you build density
estimates as intermediate components of other methods,
in these cases the discontinuity of the histograms is
a problem

- specific reason: the shape of the histogram might
strongly depends on the origin x0. Example.
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density estimation - naive estimator

Formally, consider estimation of the density p(x) of a
scalar random variable X evaluated at x. Since the
density is the derivative of the CDF P(x) then

p(x)= lim
h→0

P(x + h) – P(x – h)
2h

= lim
h→0

Pr[x – h < X < x + h]
2h

.

So for a sample {xi, i = 1, . . . , n} a natural estimator for
p(x) is

p̂(x) =
1
n

n∑
i=1

1(x – h < xi < x + h)
2h

,

where 1(·) is the indicator function.
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density estimation - naive estimator

A way to express the estimator without using the indicator
function is obtained by considering a weight function w

w(z) =

{
1
2 if |z| < 1
0 otherwise .

Howto interpret w(z).
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density estimation - naive estimator

Howto interpret w(z).

- If one evaluates w at the point 0 – xi:

w(0 – xi) =

{
1
2 if |0 – xi| < 1
0 otherwise

where

|0 – xi| < 1⇔

{
0 – xi < 1
0 – xi > –1

⇔ 0 – 1 < xi < 0 + 1

which means that w(0 – xi) assigns a weight 1/2 to each
xi whose distance from 0 is less than 1.
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density estimation - naive estimator

Howto interpret w(z).

- Evaluate w at the point (x – xi)/h

w
(x – xi

h

)
=

{
1
2 if |x–xih | < 1
0 otherwise

where∣∣∣x – xi
h

∣∣∣ < 1⇔

{
x – xi < h
x – xi > –h

⇔ x – h < xi < x + h

which means that w(x–xih ) assigns a weight 1/2 to each
xi whose distance from x is less than h.
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density estimation - naive estimator

Howto interpret w(z).

xx−h x+h
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density estimation - naive estimator

Howto interpret w(z).

xx−h x+hx1 x2

w(x1) = 1/2 w(x3) = 0

x3x0

w(x2) = 1/2w(x0) = 0
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density estimation - naive estimator

With the function w(x) we define the naive estimator as

p̂(x) =
1
n

n∑
i=1

1
h
w
(x – xi

h

)
.

Intuition. The naive estimates consists in placing a
“box” of width 2h and height 1

(2nh) on each observation and
then summing up. Example .

Limitations. Its main limitation derives from the fact
that it is not a continuous function having jumps at the
points xi ± h.
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density estimation - kernel estimator
A straightforward generalization of the naive estimator is
obtained replacing the boxes with a more general function,
called Kernel
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density estimation - kernel estimator

The kernel density estimator is then defined as

p̂(x) =
1
n

n∑
i=1

1
h
K
(
x – Xi
h

)
,

where h in this context is called bandwidth (or smoothing
parameter) and K is any kernel function.

Most used kernel functions are symmetric univariate
densities like Gaussian, Rectangular, etc. Kernel functions

Intuition: the kernel estimator is a sum of “bumps”
placed at the observations. The kernel function K
determines the shape of the bumps while the window width h
determines their width.
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R practitioner corner
In R it is very easy to obtain also the density estimate.

> library(foreign)
> ceosal1<-read.dta("
http://fmwww.bc.edu/ec-p/data/wooldridge/ceosal1.dta
> ")
> ROE <- ceosal1$roe
> hist(ROE,xlim=c(0,60),freq=FALSE,ylim=c(0,0.10))
> lines(density(ROE,bw="nrd0",adjust=c(1),kernel=c(’gaussian’)),lwd=2,col="red")
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How much smoothing?

The problem of choosing how much to smooth (that is h) is
of crucial importance in density estimation. This choice
will always be influenced by the purpose for which the
density estimate is to be used.

- representing data: subjective choice of the smoothing
parameter

- presenting conclusions: automatic bandwidth
selection, in any case it is better to undersmooth
(smoothing by eye is easier than unsmooth)
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how much smoothing?
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how much smoothing?
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how much smoothing?
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how much smoothing?
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how much smoothing?
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how much smoothing?
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how much smoothing?
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Hyper-references
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Parametric DE
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Naive estimator
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kernel functions

A kernel is a non-negative real-valued integrable function
K satisfying the following two requirements:∫ +∞

–∞
K(u) du = 1

K(–u) = K(u) for all values of u .

These two requirements ensure that

- a density estimate based on K(s) will be a PDF;

- the average of the estimated density is equal to the
sample average.

Back
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